964 resultados para SELF-INTERACTION
Resumo:
This study evaluated the influence of the dental substrates obtained after the use of different caries removal techniques on bonding of a self-etching system. Forty, extracted, carious, human molars were ground to expose flat surfaces containing caries-infected dentine surrounded by sound dentine. The caries lesions of the specimens were removed or not (control-G1) either by round steel burs and water-cooled, low speed, handpiece (G2), or by irradiation with an erbium, chromium:yttrium scandium gallium garnet (Er,Cr:YSGG) laser (2W, 20 Hz, 35.38 J/cm(2), fiber G4 handpiece with 0.2826 mm(2), non-contact mode at a 2 mm distance, 70% air/20% water-G3) or using a chemo-mechanical method (Carisolv-G4). Caries-infected, caries-affected and sound dentines were submitted to a bonding system followed by construction of a resin-based composite crown. Hour-glass shaped samples were obtained and submitted to a micro-tensile bond test. The bond strength data were compared by analysis of variance (ANOVA), complemented by Tukey`s test (P <= 0.05). The samples of sound dentine presented higher bond strengths than did samples of caries-affected dentine, except for the groups treated with the Er,Cr:YSGG laser. The highest bond strengths were observed with the sound dentine treated with burs and Carisolv. The bond strengths to caries-affected dentine were similar in all groups. Additionally, bonding to caries-affected dentine of the Er,Cr:YSGG laser and Carisolv groups was similar to bonding to caries-infected dentine. Thus, caries-affected dentine is not an adequate substrate for adhesion. Moreover, amongst the caries removal methods tested, the Er,Cr:YSGG laser irradiation was the poorest in providing a substrate for bonding with the tested self-etching system.
Resumo:
Purpose: To evaluate the influence of cleaning procedures (pumice, anionic detergent and both procedures together) on the tensile bond strength of etch-and-rinse and self-etch adhesive systems to bovine enamel and dentin in vitro. Methods: Eighty non-carious, bovine incisors were extracted, embedded in acrylic resin to obtain enamel/dentin specimens. Flat bonding surfaces were obtained by grinding. Groups were divided according to substrate (enamel or dentin), adhesive system [etch-and-rinse, Adper Single Bond 2 (SB) or self-etch, Clearfil Protect Bond (PB)]; and cleaning substances (pumice, anionic detergent and their combination). The teeth were randomly divided into 20 groups (n=8): G1 - Enamel (E) + SB; G2 -E + oil (O) + SB; G3 - E + O + Pumice (P) + SB; G4 - E + O + Tergentol (T) + SB; G5 - E + O + P + T + SB; G6 - E + PB; G7 - E + O + PB; G8 - E + O + P + PB; G9 - E + O + T + PB; GIO - E + O + P + T + PB; G11 - Dentin (D) + SB; G12 D + SB + O; G13 - D + SB + O + P; G14 - D + SB + O + T; G15 - D + SB + O + P + T; G16 - D + PB; G17 - D + O + PB +; G18 - D + O + P + PB; G19 - D + O + T + PB; G20 - D + O + P + T + PB. Specimens were contaminated with handpiece oil for 5 seconds before bonding. Adhesive systems and resin composite were applied according to manufacturers` instructions. Specimens were tested in tension after 24 hours of immersion using a universal testing machine at a crosshead speed of 0.5 mm/minute. Bond strengths were analyzed with ANOVA. Failure sites were observed and recorded. Results: Tensile bond strength in MPa were: G1 (23.6 +/- 0.9); G2 (17.3 +/- 2.2); G3 (20.9 +/- 0.9); G4 (20.6 +/- 0.5); G5 (18.7 +/- 2.3); G6 (23.0 +/- 1.0); G7 (21.5 +/- 2.4); G8 (19.9 +/- 1.3); G9 (22.1 +/- 1.2); G10 (19.1 +/- 1.2); G11 (18.8 +/- 1.3); G12 (15.7 +/- 2.1); G13 (17.8 +/- 3.3); G14 (15.3 +/- 2.9); G15 (15.6 +/- 1.9); G16 (14.7 +/- 2.3); G17 (5.5 +/- 0.9); G18 (19.3 +/- 1.8); G19 (15.6 +/- 1.6); G20 (20.3 +/- 3.9). Statistical analysis showed that the main factors substrate and cleaning were statistically significant, as well as the triple interaction between factors of variance. However, the factor adhesive system did not show statistical difference. Oil contamination reduced bond strengths, being less detrimental to enamel than to dentin. Etch-and-rinse (SB) and two-step self-etch (PB) systems had similar bond strengths in the presence of oil contamination. For etch-and-rinse (SB), the cleaning procedures were able to clean enamel, but dentin was better cleaned by pumice. When self-etch (PB) system was used on enamel, anionic detergent was the best cleaning substance, while on dentin the tested procedures were similarly efficient.
Resumo:
The adhesive performance on deproteinized dentin of different self-adhesive resin cements was evaluated through microtensile bond strength (mu TBS) analysis and scanning electron microscopy (SEM). Occlusal dentin of human molars were distributed into different groups, according to the categories: adhesive cementation with two-step bonding systems-control Groups (Adper Single Bond 2 + RelyX ARC/3M ESPE; One Step Plus + Duolink/Bisco; Excite + Variolink I/Ivoclar Vivadent) and self-adhesive cementation-experimental groups (Rely X Unicem/3M ESPE; Biscem/Bisco; MultiLink Sprint/Ivoclar Vivadent). Each group was subdivided according to the dentin approach to: alpha, maintenance of collagen fibers and beta, deproteinization. The mean values were obtained, and submitted to ANOVA and Tukey test. Statistical differences were obtained to the RelyX Unicem groups (alpha = 13.59 MPa; beta = 30.19 MPa). All the BIS Group specimens failed before the mechanical tests. Dentinal deproteinization provided an improved bond performance for the self-adhesive cement Rely X Unicem, and had no negative effect on the other cementing systems studied. (C) 2011 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 98B: 387-394, 2011.
Resumo:
Objectives: This study evaluated the immediate and 6-month resin-dentin mu-bond strength (mu TBS) of one-step self-etch systems (Adper Prompt L-Pop [AD] 3M ESPE; Xeno III [XE] Dentsply De Trey; iBond [iB] Heraeus Kulzer) under different application modes. Materials and methods: Dentin oclusal surfaces were exposed by grinding with 600-grit SiC paper. The adhesives were applied according to the manufacturer`s directions [MD], or with double application of the adhesive layer [DA] or following the manufacturer`s directions plus a hydrophobic resin layer coating [HL]. After applying the adhesive resins, composite crowns were built up incrementally. After 24-h water storage, the specimens were serially sectioned in ""x"" and ""y"" directions to obtain bonded sticks of about 0.8 mm 2 to be tested immediately [IM] or after 6 months of water storage [6M] at a crosshead speed of 0.5 mm/min. The data from each adhesive was analyzed by a two-way repeated measures ANOVA (mode of application vs. storage time) and Tukey`s test (alpha = 0.05). Results: The adhesives performed differently according to the application mode. The DA and HL either improved the immediate performance of the adhesive or did not differ from the MD. The resin-dentin bond strength values observed after 6 months were higher when a hydrophobic resin coat was used than compared to those values observed under the manufacturer`s directions. Conclusions: The double application of one-step self-etch system can be safety performed however the application of an additional hydrophobic resin layer can improve the immediate resin-dentin bonds and reduce the degradation of resin bonds over time. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Objectives To characterize the properties of dentin matrix treated with two proanthocyanidin rich cross-linking agents and their effect on dentin bonded interfaces. Methods Sound human molars were cut into 0.5mm thick dentin slabs, demineralized and either treated with one of two cross-linking agents (grape seedGSE and cocoa seedCOE extracts) or left untreated. The modulus of elasticity of demineralized dentin was assessed after 10 or 60min and the swelling ratio after 60min treatment. Bacterial collagenase was also used to assess resistance to enzymatic degradation of samples subjected to ultimate tensile strength. The effect of GSE or COE on the resindentin bond strength was evaluated after 10 or 60min of exposure time. Data were statistically analyzed at a 95% confidence interval. Results Both cross-linkers increased the elastic modulus of demineralized dentin as exposure time increased. Swelling ratio was lower for treated samples when compared to control groups. No statistically significant changes to the UTS indicate that collagenase had no effect on dentin matrix treated with either GSE or COE. Resindentin bonds significantly increased following treatment with GSE regardless of the application time or adhesive system used. Significance Increased mechanical properties and stability of dentin matrix can be achieved by the use of PA-rich collagen cross-linkers most likely due to the formation of a PAcollagen complex. The short term resindentin bonds can be improved after 10min dentin treatment.(C) 2010 Academy of Denta lMaterials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Purpose: To evaluate in vitro the microshear bond strength of adhesive systems applied to dentin according to manufacturers` instructions, associated or not with a hydrophobic layer of unfilled resin. Materials and Methods: Six self-etching adhesives (Clearfil SE Bond, Kuraray Medical; AdheSE, lvoclar Vivadent; Xeno III, Dentsply; I Bond, Heraeus-Kulzer; Bond Force, Tokuyama; Futurabond DC, Voco) were tested. The labial dentin of sixty bovine incisors was exposed, and the teeth were divided into two groups according to the application or not of an extra hydrophobic resin layer (Scotchbond Multi Purpose Plus, bottle 3). Six composite cylinders (Filtek Z250, 3M ESPE) were built up on each treated surface. Specimens were stored in distilled water at 37 C for 24 h and then subjected to the microshear bond strength test in a universal testing machine at a crosshead speed of 0.5 mm/min. Microshear bond strength values were analyzed by 2-way ANOVA and Tukey`s post-hoc test. Failure mode was determined using a stereomicroscope under 20X magnification. Results: The application of the hydrophobic resin layer did not affect bond strength, except for AdheSE. However, the bond strengths with the hydrophobic layer were similar among the six tested systems (Clearfil: 17.1 +/- 7.9; AdheSE: 14.5 +/- 7.1; Xeno III: 12.8 +/- 7.7; I Bond: 9.5 +/- 5.8; Bond Force: 17.5 +/- 4.1; Futurabond: 7.7 +/- 2.3). When used as recommended by the manufacturers, Bond Force presented statistically higher bond strength than AdheSE and I Bond (p < 0.05) (Clearfil 10.4 +/- 4.9; AdheSE 1.6 +/- 1.6; Xeno III: 9.0 +/- 3.8; I Bond: 3.0 +/- 1.5; Bond Force: 14 +/- 3.9; Futurabond: 8.8 +/- 3.8). Failure mode was predominantly adhesive. Conclusion: The bond strength of the self-etching systems tested was not significantly affected by the application of a hydrophobic layer, but a significant improvement was observed in AdheSE.
Resumo:
This study evaluated the effect of the C-factor and dentin preparation method (DPM) in the bond strength (BS) of a mild self-etch adhesive; the study also observed the SEM superficial aspects of the corresponding smear layer. For purposes of this study, 25 molars (n=5) were used in a bond strength test. The molars were divided into two parts (buccal and lingual): one part received a Class V cavity (C-factor=3) and the other received a flat surface (C-factor=0) with the same bur type (coarse diamond or carbide bur and fine diamond or carbide bur), both within the same dentin depth. Five teeth were prepared with wet 60-grit and 600-grit SiC papers. After restoration with Clearfil SE Bond, microtensile beans (0.8 mm(2)) were prepared and tested after 24 hours in a universal testing machine (0.5 mm/minute). An additional two teeth for each DPM were prepared for SEM evaluation of the smear layer superficial aspects. The BS values were submitted to one-way ANOVA, considering only the DPM (flat surfaces) and two-way ANOVA (C-Factor x DPM, considering only burs) with p=0.05. Although the DPM in the flat surfaces was not significant, the standard deviations of carbide bur-prepared specimens were markedly lower. The BS was significantly lower in cavities. The fine carbide bur presented the most favorable smear layer aspect. It was concluded that different dentin preparation methods could not prevent the adverse effect in bond strength of a high C-factor. A coarse cut carbide bur should be avoided prior to a mild self-etch adhesive, because it adversely affected bond strength. In contrast, a fine cut carbide bur provided the best combination: high bond strength with low variability, which suggests a more reliable bond strength performance.
Resumo:
Objective: To examine the morphological, early and long-term microtensile bond strengths (mu TBS) of one-step self-etch systems to unground and ground enamel. Materials and Methods: Resin composite (Filtek Z250) buildups were bonded to the buccal and lingual enamel surfaces (unground, bur-cut or SiC-roughened enamel) of third molars after adhesive application using the following adhesives: Clearfil S(3) Bond (CS3); Adper Prompt L-Pop (ADP); iBond (iB) and, as the control, Clearfil SE Bond (CSE). Six tooth halves were assigned for each condition. After storage in water (24 hours/37 degrees C), the bonded specimens were sectioned into beams (0.8 mm(2)) and subjected to pTBS (0.5 mm/min) either immediately (IM) or after six (6M) or 12 months (12M) of water storage. The data were analyzed by three-way repeated measures ANOVA and Tukey`s test (alpha=0.05). Surface conditioning was observed under scanning electron microscopy (SEM). Results: The mu TBS in the Si-C paper and diamond bur groups were similar and higher than the unground group. No significant difference was observed among the different storage periods, except for CS3, which showed an increase in the pTBS after 12M. The etching pattern was more retentive on ground enamel. Conclusions: One-step self-etch adhesives showed higher bond strengths on ground enamel and no reductions in resin-enamel bonds were observed after 12M of water storage.
Resumo:
Purpose: To evaluate early and 24-hour microtensile bond strength (mu TBS) and the degree of conversion (DC) of one representative adhesive system from each of the four current bonding approaches. Methods: 40 human molars were sectioned occluso-gingivally into two halves. Resin composite was bonded incrementally to flat, mid-coronal dentin, using the adhesives Adper Scotchbond MP (MP); Adper Scotchbond 2 (SB); Clearfil SE Bond (SE); and Adper Prompt L-Pop (LP) according to the respective manufacturer`s instructions (n= 10). One half was immediately sectioned into sticks and subjected to mu TBS test. As the sectioning process took approximately 1 hour, the results were designated as 1-hour bond strengths. The other half was stored in distilled water at 37 degrees C for 24 hours before being sectioned and tested. The DC of these systems was measured using Fourier Transform-Raman spectroscopy in three periods: immediately, 1 and 24 hours after polymerization. Data were analyzed with ANOVA and Tukey`s tests. Results: There were no significant differences between the 1-hour and 24-hour bond strengths (P> 0.05), or among the DC measured immediately, 1 hour and 24 hours after polymerization (P> 0.05). However, significant differences were observed among adhesives (P< 0.05). mu TBS values obtained, in MPa (1 hour/24 hour), were: SB (48.6 + 1.3/48.4 + 3.5) = SE (51.9 + 4.7/53.3 +/- 2.9) > MP (35.3 +/- 10.9/38.6 + 6.7) > LP (25.5 + 1.1/26.0 + 1.5). The DC, in percentage (immediately/1 hour/24 hour), were: SE (81/82/87) > MP (79/77/81) > SB (60/63/65) > LP (39/37/42).
Resumo:
This study examined the early and long-term microtensile bond strengths (mu TBS) and interfacial enamel gap formation (IGW) of two-step selfetch systems to unground and ground enamel. Resin composite (Filtek Z250) buildups were bonded to proximal enamel surfaces (unground, bur-cut or SiC-treated enamel) of third molars after the application of four self-etch adhesives: a mild (Clearfil SE Bond [SE]), two moderate (Optibond Solo Plus Self-Etch Primer [SO] and AdheSE [AD]) and a strong adhesive (Tyrian Self Priming Etchant + One Step Plus [TY]) and two etch-and-rinse adhesive systems (Single Bond [SB] and Scotchbond Multi-Purpose Plus [SBMP]). Ten tooth halves were assigned for each adhesive. After storage in water (24 hours/37 degrees C), the bonded specimens were sectioned into beams (0.9 mm(2)) and subjected to mu TBS (0.5 mm/minute) or interfacial gap width measurement (stereomicroscope at 400x) either immediately (IM) or after 12 months (12M) of water storage. The data were analyzed by three-way repeated measures ANOVA and Tukey`s test (alpha=0.05). No gap formation was observed in any experimental condition. The mu TBS in the Si-C paper and diamond bur groups were similar and greater than the unground group only for the moderate self-etch systems (SO and AD). No reductions in bond strength values were observed after 12 months of water storage, regardless of the adhesive evaluated.
Resumo:
The progress of science in search of new techniques of the nerve regeneration and the functional repair in reinnervated muscle has been the target of many researchers around the world. Consequently, nerves and muscles in different body segments asked for more enlightenment of their morphology, their interrelation with other anatomic structures and their peculiarities. One of the most significant areas that need deeper studies is the region of the head and neck, since they are often affected by important pathologies. In order to offer the researcher`s community a morphological myoneural interaction model, this study elected the levator labii superioris muscle and its motor nerve, the buccal branch of the facial nerve (VII pair) not only for its special characteristics, but also its value on the facial expression. The rat was chosen for this investigation for being easy to obtain, to keep, to manipulate and to compare this experiment with many others studies previously published. The techniques used were Mesoscopic (dissection), histoenzymologic and morphometric ones. In the results the muscle proved to have a predominance of fast twich fibers (FG and FOG) and superficial location, with a proximal bone and a distal cutaneous insertion. Its motor nerve, the buccal branch of the facial nerve (VII pair), breaks through the muscle belly into its deep face, and comprised a heterogeneous group of myelinic nerve fibers disposed in a regular form in all fascicle. Near the motor point, the nerve showed to be composed of two fascicles with different sizes. Due to the small nerve dimensions, the nerve fibers have a smaller diameter if compared to the motor nerve of pectineus muscle of the cat. Further studies with neural tracers have already had a start in order to provide more information about the distribution and the architecture of these fibers.
Resumo:
Objectives: To evaluate the effect of chemical degradation on bond strength of resin-modified glass-ionomer cements bonded to primary and permanent dentin. Methods: Class I cavities of permanent and primary extracted human molars were restored with two resin-modified glass-ionomer cements: Fuji 11 LC and Vitremer, and stored in water for 24 h. Half samples were immersed in 10% NaOCl aqueous solution for 5 h. Teeth were sectioned into beams and tested for microtensile bond strengths. Results were analyzed with multiple ANOVA and Tukey`s tests (p < 0.05). Analysis of debonded surfaces was performed by SEM. Results: 24 h bond strengths for Vitremer and Fuji 11 LC were similar. For Fuji 11, bond strength values were higher for primary than for permanent dentin. Vitremer bond strength was similar for both. Chemical degradation did not affect Fuji I] LC bond strength to dentin. However, decreases in bond strength were found for Vitremer groups after NaOCl immersion. Signs of glass ionomer-dentin interaction were evident by SEM analysis for Fuji 11 LC specimens. Conclusions: Vitremer and Fuji II presented similar bond strength at 24. Vitremer dentin bonds were prone to chemical degradation. Fuji II LC-dentin bonds showed typical features of glass-ionomer dentin interaction at the bonded interfaces, and were resistant to in vitro degradation. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Objective: To evaluate, through the application of different dentin bonding systems, the influence of wetness on shear bond strength in enamel. Methods: This study evaluated three etch-and-rinse adhesive systems (Scotchbond MP [used with and without primer]; Singlebond; and Prime&Bond 2.1) and two self-etching adhesive systems (Clearfil SE Bond; and Xeno IV). Flat bovine enamel surfaces were either air-dried for 30 seconds or blotted with absorbent paper after acid-etching for the conventional bonding agents or before the application of self-etching bonding agents. The resin composite EsthetX was bonded to flat surfaces that had been treated with one of the adhesives, following the manufacturer`s instructions. After being stored in water at 37 degrees C for one week, bonded specimens were broken in shear. Data were evaluated with two-way analysis of variance (ANOVA) and Student-Newman-Keuls tests (alpha=0.05). For comparing each condition individually, regardless of the adhesive or wetness condition, a one-way ANOVA and a Student-Newman-Keuls test (alpha=0.05) were applied. Results: The two-way ANOVA showed significant differences among adhesive systems. An interaction effect was also observed (p < 0.05), but wetness did not influence shear bond strength (p=0.98). The one-way ANOVA showed that the all-in-one adhesive was the only material influenced by the presence of water at the enamel`s surface. Conclusion: The all-in-one adhesive behaved differently depending on whether the enamel surface was dry or wet.
Resumo:
Objective: To evaluate the performance of All Bond SE used in a one- or two-step protocol in a 24-month randomized clinical study. Methods: Thirty-three patients with two similarly sized non-carious cervical lesions participated in this study. A total of 66 restorations were placed, half using the one-step All Bond SE protocol (SE-1) and the other half using the two-step All Bond SE protocol (SE-2). The restorations were evaluated at baseline and after 6, 12 and 24 months following the modified USPHS criteria and analyzed by the McNemar`s test and Fisher`s exact test (alpha=0.05). Results: After 24 months, six SE-1 and four SE-2 restorations were rated as Bravo in marginal discoloration The retention rates for SE-1 and SE-2 were 84.8% and 90.9%, respectively, after 24 months. Compared to baseline, the retention rate for SE-1 was statistically lower. Conclusions: All Bond SE used in the one- or two-step protocol resulted in high retention rates after 24 months.
Resumo:
A new completely integrable model of strongly correlated electrons is proposed which describes two competitive interactions: one is the correlated one-particle hopping, the other is the Hubbard-like interaction. The integrability follows from the fact that the Hamiltonian is derivable from a one-parameter family of commuting transfer matrices. The Bethe ansatz equations are derived by algebraic Bethe ansatz method.