963 resultados para S. Warwick
Resumo:
A multivariable hyperstable robust adaptive decoupling control algorithm based on a neural network is presented for the control of nonlinear multivariable coupled systems with unknown parameters and structure. The Popov theorem is used in the design of the controller. The modelling errors, coupling action and other uncertainties of the system are identified on-line by a neural network. The identified results are taken as compensation signals such that the robust adaptive control of nonlinear systems is realised. Simulation results are given.
Resumo:
This paper illustrates how internal model control of nonlinear processes can be achieved by recurrent neural networks, e.g. fully connected Hopfield networks. It is shown that using results developed by Kambhampati et al. (1995), that once a recurrent network model of a nonlinear system has been produced, a controller can be produced which consists of the network comprising the inverse of the model and a filter. Thus, the network providing control for the nonlinear system does not require any training after it has been trained to model the nonlinear system. Stability and other issues of importance for nonlinear control systems are also discussed.
Resumo:
A neural network enhanced self-tuning controller is presented, which combines the attributes of neural network mapping with a generalised minimum variance self-tuning control (STC) strategy. In this way the controller can deal with nonlinear plants, which exhibit features such as uncertainties, nonminimum phase behaviour, coupling effects and may have unmodelled dynamics, and whose nonlinearities are assumed to be globally bounded. The unknown nonlinear plants to be controlled are approximated by an equivalent model composed of a simple linear submodel plus a nonlinear submodel. A generalised recursive least squares algorithm is used to identify the linear submodel and a layered neural network is used to detect the unknown nonlinear submodel in which the weights are updated based on the error between the plant output and the output from the linear submodel. The procedure for controller design is based on the equivalent model therefore the nonlinear submodel is naturally accommodated within the control law. Two simulation studies are provided to demonstrate the effectiveness of the control algorithm.
Resumo:
The recursive least-squares algorithm with a forgetting factor has been extensively applied and studied for the on-line parameter estimation of linear dynamic systems. This paper explores the use of genetic algorithms to improve the performance of the recursive least-squares algorithm in the parameter estimation of time-varying systems. Simulation results show that the hybrid recursive algorithm (GARLS), combining recursive least-squares with genetic algorithms, can achieve better results than the standard recursive least-squares algorithm using only a forgetting factor.
Resumo:
In the last few years a state-space formulation has been introduced into self-tuning control. This has not only allowed for a wider choice of possible control actions, but has also provided an insight into the theory underlying—and hidden by—that used in the polynomial description. This paper considers many of the self-tuning algorithms, both state-space and polynomial, presently in use, and by starting from first principles develops the observers which are, effectively, used in each case. At any specific time instant the state estimator can be regarded as taking one of two forms. In the first case the most recently available output measurement is excluded, and here an optimal and conditionally stable observer is obtained. In the second case the present output signal is included, and here it is shown that although the observer is once again conditionally stable, it is no longer optimal. This result is of significance, as many of the popular self-tuning controllers lie in the second, rather than first, category.
Resumo:
A definition is given for the characteristic equation of anN-partitioned matrix. It is then proved that this matrix satisfies its own characteristic equation. This can then be regarded as a version of the Cayley-Hamilton theorem, of use withN-dimensional systems.
Resumo:
In a recent paper, Vathsal suggested that a new configuration had been obtained for linear filtering problems, which was distinctly different from the Kalman-Bucy filter. It is shown that this in fact is merely a special case of the filter with a specified input.
Resumo:
This paper employs a state space system description to provide a pole placement scheme via state feedback. It is shown that when a recursive least squares estimation scheme is used, the feedback employed can be expressed simply in terms of the estimated system parameters. To complement the state feedback approach, a method employing both state feedback and linear output feedback is discussed. Both methods arc then compared with the previous output polynomial type feedback schemes.
Resumo:
Symmetrical behaviour of the covariance matrix and the positive-definite criterion are used to simplify identification of single-input/single-output systems using recursive least squares. Simulation results are obtained and these are compared with ordinary recursive least squares. The adaptive nature of the identifier is verified by varying the system parameters on convergence.
Resumo:
The relationship between minimum variance and minimum expected quadratic loss feedback controllers for linear univariate discrete-time stochastic systems is reviewed by taking the approach used by Caines. It is shown how the two methods can be regarded as providing identical control actions as long as a noise-free measurement state-space model is employed.
Resumo:
In this paper, practical generation of identification keys for biological taxa using a multilayer perceptron neural network is described. Unlike conventional expert systems, this method does not require an expert for key generation, but is merely based on recordings of observed character states. Like a human taxonomist, its judgement is based on experience, and it is therefore capable of generalized identification of taxa. An initial study involving identification of three species of Iris with greater than 90% confidence is presented here. In addition, the horticulturally significant genus Lithops (Aizoaceae/Mesembryanthemaceae), popular with enthusiasts of succulent plants, is used as a more practical example, because of the difficulty of generation of a conventional key to species, and the existence of a relatively recent monograph. It is demonstrated that such an Artificial Neural Network Key (ANNKEY) can identify more than half (52.9%) of the species in this genus, after training with representative data, even though data for one character is completely missing.
Resumo:
This paper considers PID control in terms of its implementation by means of an ARMA plant model. Two controller actions are considered, namely pole placement and deadbeat, both being applied via a PID structure for the adaptive real-time control of an industrial level system. As well as looking at two controller types separately, a comparison is made between the forms and it is shown how, under certain circumstances, the two forms can be seen to be identical. It is shown how the pole-placement PID form does not in fact realise an action which is equivalent to the deadbeat controller, when all closed-loop poles are chosen to be at the origin of the z-plane.
Resumo:
The design of high-voltage equipment encompasses the study of oscillatory surges caused by transients such as those produced by switching. By obtaining a model, the response of which reconstructs that observed in the actual system, simulation studies and critical tests can be carried out on the model rather than on the equipment itself. In this paper, methods for the construction of simplified models are described and it is shown how the use of a complex model does not necessarily result in superior response pattern reconstruction.
Resumo:
A parallel structure is suggested for feedback control systems. Such a technique can be applied to either single or multi-sensor environments and is ideally suited for parallel processor implementation. The control input actually applied is based on a weighted summation of the different parallel controller values, the weightings being either fixed values or chosen by an adaptive decision-making mechanism. The effect of different controller combinations is a field now open to study.
Resumo:
A simple parameter adaptive controller design methodology is introduced in which steady-state servo tracking properties provide the major control objective. This is achieved without cancellation of process zeros and hence the underlying design can be applied to non-minimum phase systems. As with other self-tuning algorithms, the design (user specified) polynomials of the proposed algorithm define the performance capabilities of the resulting controller. However, with the appropriate definition of these polynomials, the synthesis technique can be shown to admit different adaptive control strategies, e.g. self-tuning PID and self-tuning pole-placement controllers. The algorithm can therefore be thought of as an embodiment of other self-tuning design techniques. The performances of some of the resulting controllers are illustrated using simulation examples and the on-line application to an experimental apparatus.