996 resultados para Ryanodine Receptor
Resumo:
BACKGROUND: The clinical syndrome of heart failure (HF) is characterized by an impaired cardiac beta-adrenergic receptor (betaAR) system, which is critical in the regulation of myocardial function. Expression of the betaAR kinase (betaARK1), which phosphorylates and uncouples betaARs, is elevated in human HF; this likely contributes to the abnormal betaAR responsiveness that occurs with beta-agonist administration. We previously showed that transgenic mice with increased myocardial betaARK1 expression had impaired cardiac function in vivo and that inhibiting endogenous betaARK1 activity in the heart led to enhanced myocardial function. METHODS AND RESULTS: We created hybrid transgenic mice with cardiac-specific concomitant overexpression of both betaARK1 and an inhibitor of betaARK1 activity to study the feasibility and functional consequences of the inhibition of elevated betaARK1 activity similar to that present in human HF. Transgenic mice with myocardial overexpression of betaARK1 (3 to 5-fold) have a blunted in vivo contractile response to isoproterenol when compared with non-transgenic control mice. In the hybrid transgenic mice, although myocardial betaARK1 levels remained elevated due to transgene expression, in vitro betaARK1 activity returned to control levels and the percentage of betaARs in the high-affinity state increased to normal wild-type levels. Furthermore, the in vivo left ventricular contractile response to betaAR stimulation was restored to normal in the hybrid double-transgenic mice. CONCLUSIONS: Novel hybrid transgenic mice can be created with concomitant cardiac-specific overexpression of 2 independent transgenes with opposing actions. Elevated myocardial betaARK1 in transgenic mouse hearts (to levels seen in human HF) can be inhibited in vivo by a peptide that can prevent agonist-stimulated desensitization of cardiac betaARs. This may represent a novel strategy to improve myocardial function in the setting of compromised heart function.
Resumo:
BACKGROUND: Heart failure is characterized by abnormalities in beta-adrenergic receptor (betaAR) signaling, including increased level of myocardial betaAR kinase 1 (betaARK1). Our previous studies have shown that inhibition of betaARK1 with the use of the Gbetagamma sequestering peptide of betaARK1 (betaARKct) can prevent cardiac dysfunction in models of heart failure. Because inhibition of betaARK activity is pivotal for amelioration of cardiac dysfunction, we investigated whether the level of betaARK1 inhibition correlates with the degree of heart failure. METHODS AND RESULTS: Transgenic (TG) mice with varying degrees of cardiac-specific expression of betaARKct peptide underwent transverse aortic constriction (TAC) for 12 weeks. Cardiac function was assessed by serial echocardiography in conscious mice, and the level of myocardial betaARKct protein was quantified at termination of the study. TG mice showed a positive linear relationship between the level of betaARKct protein expression and fractional shortening at 12 weeks after TAC. TG mice with low betaARKct expression developed severe heart failure, whereas mice with high betaARKct expression showed significantly less cardiac deterioration than wild-type (WT) mice. Importantly, mice with a high level of betaARKct expression had preserved isoproterenol-stimulated adenylyl cyclase activity and normal betaAR densities in the cardiac membranes. In contrast, mice with low expression of the transgene had marked abnormalities in betaAR function, similar to the WT mice. CONCLUSIONS: These data show that the level of betaARK1 inhibition determines the degree to which cardiac function can be preserved in response to pressure overload and has important therapeutic implications when betaARK1 inhibition is considered as a molecular target.
Resumo:
The actions of many hormones and neurotransmitters are mediated through stimulation of G protein-coupled receptors. A primary mechanism by which these receptors exert effects inside the cell is by association with heterotrimeric G proteins, which can activate a wide variety of cellular enzymes and ion channels. G protein-coupled receptors can also interact with a number of cytoplasmic scaffold proteins, which can link the receptors to various signaling intermediates and intracellular effectors. The multicomponent nature of G protein-coupled receptor signaling pathways makes them ideally suited for regulation by scaffold proteins. This review focuses on several specific examples of G protein-coupled receptor-associated scaffolds and the roles they may play in organizing receptor-initiated signaling pathways in the cardiovascular system and other tissues.
Resumo:
The beta-adrenergic receptor kinase (beta ARK) phosphorylates the agonist-occupied beta-adrenergic receptor to promote rapid receptor uncoupling from Gs, thereby attenuating adenylyl cyclase activity. Beta ARK-mediated receptor desensitization may reflect a general molecular mechanism operative on many G-protein-coupled receptor systems and, particularly, synaptic neurotransmitter receptors. Two distinct cDNAs encoding beta ARK isozymes were isolated from rat brain and sequenced. The regional and cellular distributions of these two gene products, termed beta ARK1 and beta ARK2, were determined in brain by in situ hybridization and by immunohistochemistry at the light and electron microscopic levels. The beta ARK isozymes were found to be expressed primarily in neurons distributed throughout the CNS. Ultrastructurally, beta ARK1 and beta ARK2 immunoreactivities were present both in association with postsynaptic densities and, presynaptically, with axon terminals. The beta ARK isozymes have a regional and subcellular distribution consistent with a general role in the desensitization of synaptic receptors.
Resumo:
Exogenous gene delivery to alter the function of the heart is a potential novel therapeutic strategy for treatment of cardiovascular diseases such as heart failure (HF). Before gene therapy approaches to alter cardiac function can be realized, efficient and reproducible in vivo gene techniques must be established to efficiently transfer transgenes globally to the myocardium. We have been testing the hypothesis that genetic manipulation of the myocardial beta-adrenergic receptor (beta-AR) system, which is impaired in HF, can enhance cardiac function. We have delivered adenoviral transgenes, including the human beta2-AR (Adeno-beta2AR), to the myocardium of rabbits using an intracoronary approach. Catheter-mediated Adeno-beta2AR delivery produced diffuse multichamber myocardial expression, peaking 1 week after gene transfer. A total of 5 x 10(11) viral particles of Adeno-beta2AR reproducibly produced 5- to 10-fold beta-AR overexpression in the heart, which, at 7 and 21 days after delivery, resulted in increased in vivo hemodynamic function compared with control rabbits that received an empty adenovirus. Several physiological parameters, including dP/dtmax as a measure of contractility, were significantly enhanced basally and showed increased responsiveness to the beta-agonist isoproterenol. Our results demonstrate that global myocardial in vivo gene delivery is possible and that genetic manipulation of beta-AR density can result in enhanced cardiac performance. Thus, replacement of lost receptors seen in HF may represent novel inotropic therapy.
Resumo:
Deleterious effects on the heart from chronic stimulation of beta-adrenergic receptors (betaARs), members of the 7 transmembrane receptor family, have classically been shown to result from Gs-dependent adenylyl cyclase activation. Here, we identify a new signaling mechanism using both in vitro and in vivo systems whereby beta-arrestins mediate beta1AR signaling to the EGFR. This beta-arrestin-dependent transactivation of the EGFR, which is independent of G protein activation, requires the G protein-coupled receptor kinases 5 and 6. In mice undergoing chronic sympathetic stimulation, this novel signaling pathway is shown to promote activation of cardioprotective pathways that counteract the effects of catecholamine toxicity. These findings suggest that drugs that act as classical antagonists for G protein signaling, but also stimulate signaling via beta-arrestin-mediated cytoprotective pathways, would represent a novel class of agents that could be developed for multiple members of the 7 transmembrane receptor family.
Resumo:
To assess the effect of targeted myocardial beta-adrenergic receptor (AR) stimulation on relaxation and phospholamban regulation, we studied the physiological and biochemical alterations associated with overexpression of the human beta2-AR gene in transgenic mice. These mice have an approximately 200-fold increase in beta-AR density and a 2-fold increase in basal adenylyl cyclase activity relative to negative littermate controls. Mice were catheterized with a high fidelity micromanometer and hemodynamic recordings were obtained in vivo. Overexpression of the beta2-AR altered parameters of relaxation. At baseline, LV dP/dt(min) and the time constant of LV pressure isovolumic decay (Tau) in the transgenic mice were significantly shorter compared with controls, indicating markedly enhanced myocardial relaxation. Isoproterenol stimulation resulted in shortening of relaxation velocity in control mice but not in the transgenic mice, indicating maximal relaxation in these animals. Immunoblotting analysis revealed a selective decrease in the amount of phospholamban protein, without a significant change in the content for either sarcoplasmic reticulum Ca2+ ATPase or calsequestrin, in the transgenic hearts compared with controls. This study indicates that myocardial relaxation is both markedly enhanced and maximal in these mice and that conditions associated with chronic beta-AR stimulation can result in a selective reduction of phospholamban protein.
Resumo:
Antibodies specific for the beta(1)-adrenergic receptor are found in patients with chronic heart failure of various etiologies. From work presented in this issue of the JCI, we can now infer that these antibodies actually contribute to the pathogenesis of chronic heart failure. This commentary discusses mechanisms by which these antibodies may engender cardiomyopathy.
Resumo:
Release of endogenous dynorphin opioids within the spinal cord after partial sciatic nerve ligation (pSNL) is known to contribute to the neuropathic pain processes. Using a phosphoselective antibody [kappa opioid receptor (KOR-P)] able to detect the serine 369 phosphorylated form of the KOR, we determined possible sites of dynorphin action within the spinal cord after pSNL. KOR-P immunoreactivity (IR) was markedly increased in the L4-L5 spinal dorsal horn of wild-type C57BL/6 mice (7-21 d) after lesion, but not in mice pretreated with the KOR antagonist nor-binaltorphimine (norBNI). In addition, knock-out mice lacking prodynorphin, KOR, or G-protein receptor kinase 3 (GRK3) did not show significant increases in KOR-P IR after pSNL. KOR-P IR was colocalized in both GABAergic neurons and GFAP-positive astrocytes in both ipsilateral and contralateral spinal dorsal horn. Consistent with sustained opioid release, KOR knock-out mice developed significantly increased tactile allodynia and thermal hyperalgesia in both the early (first week) and late (third week) interval after lesion. Similarly, mice pretreated with norBNI showed enhanced hyperalgesia and allodynia during the 3 weeks after pSNL. Because sustained activation of opioid receptors might induce tolerance, we measured the antinociceptive effect of the kappa agonist U50,488 using radiant heat applied to the ipsilateral hindpaw, and we found that agonist potency was significantly decreased 7 d after pSNL. In contrast, neither prodynorphin nor GRK3 knock-out mice showed U50,488 tolerance after pSNL. These findings suggest that pSNL induced a sustained release of endogenous prodynorphin-derived opioid peptides that activated an anti-nociceptive KOR system in mouse spinal cord. Thus, endogenous dynorphin had both pronociceptive and antinociceptive actions after nerve injury and induced GRK3-mediated opioid tolerance.
Resumo:
G protein-coupled receptor kinases (GRKs) phosphorylate activated G protein-coupled receptors, including alpha(1B)-adrenergic receptors (ARs), resulting in desensitization. In vivo analysis of GRK substrate selectivity has been limited. Therefore, we generated hybrid transgenic mice with myocardium-targeted overexpression of 1 of 3 GRKs expressed in the heart (GRK2 [commonly known as the beta-AR kinase 1], GRK3, or GRK5) with concomitant cardiac expression of a constitutively activated mutant (CAM) or wild-type alpha(1B)AR. Transgenic mice with cardiac CAMalpha(1B)AR overexpression had enhanced myocardial alpha(1)AR signaling and elevated heart-to-body weight ratios with ventricular atrial natriuretic factor expression denoting myocardial hypertrophy. Transgenic mouse hearts overexpressing only GRK2, GRK3, or GRK5 had no hypertrophy. In hybrid transgenic mice, enhanced in vivo signaling through CAMalpha(1B)ARs, as measured by myocardial diacylglycerol content, was attenuated by concomitant overexpression of GRK3 but not GRK2 or GRK5. CAMalpha(1B)AR-induced hypertrophy and ventricular atrial natriuretic factor expression were significantly attenuated with either concurrent GRK3 or GRK5 overexpression. Similar GRK selectivity was seen in hybrid transgenic mice with wild-type alpha(1B)AR overexpression concurrently with a GRK. GRK2 overexpression was without effect on any in vivo CAM or wild-type alpha(1B)AR cardiac phenotype, which is in contrast to previously reported in vitro findings. Furthermore, endogenous myocardial alpha(1)AR mitogen-activated protein kinase signaling in single-GRK transgenic mice also exhibited selectivity, as GRK3 and GRK5 desensitized in vivo alpha(1)AR mitogen-activated protein kinase responses that were unaffected by GRK2 overexpression. Thus, these results demonstrate that GRKs differentially interact with alpha(1B)ARs in vivo such that GRK3 desensitizes all alpha(1B)AR signaling, whereas GRK5 has partial effects and, most interestingly, GRK2 has no effect on in vivo alpha(1B)AR signaling in the heart.
Resumo:
Deregulation of the Sonic hedgehog pathway has been implicated in an increasing number of human cancers. In this pathway, the seven-transmembrane (7TM) signaling protein Smoothened regulates cellular proliferation and differentiation through activation of the transcription factor Gli. The activity of mammalian Smoothened is controlled by three different hedgehog proteins, Indian, Desert, and Sonic hedgehog, through their interaction with the Smoothened inhibitor Patched. However, the mechanisms of signal transduction from Smoothened are poorly understood. We show that a kinase which regulates signaling by many "conventional" 7TM G-protein-coupled receptors, G protein-coupled receptor kinase 2 (GRK2), participates in Smoothened signaling. Expression of GRK2, but not catalytically inactive GRK2, synergizes with active Smoothened to mediate Gli-dependent transcription. Moreover, knockdown of endogenous GRK2 by short hairpin RNA (shRNA) significantly reduces signaling in response to the Smoothened agonist SAG and also inhibits signaling induced by an oncogenic Smoothened mutant, Smo M2. We find that GRK2 promotes the association between active Smoothened and beta-arrestin 2. Indeed, Gli-dependent signaling, mediated by coexpression of Smoothened and GRK2, is diminished by beta-arrestin 2 knockdown with shRNA. Together, these data suggest that GRK2 plays a positive role in Smoothened signaling, at least in part, through the promotion of an association between beta-arrestin 2 and Smoothened.
Resumo:
beta-arrestin-1 is an adaptor protein that mediates agonist-dependent internalization and desensitization of G-protein-coupled receptors (GPCRs) and also participates in the process of heterologous desensitization between receptor tyrosine kinases and GPCR signaling. In the present study, we determined whether beta-arrestin-1 is involved in insulin-induced insulin receptor substrate 1 (IRS-1) degradation. Overexpression of wild-type (WT) beta-arrestin-1 attenuated insulin-induced degradation of IRS-1, leading to increased insulin signaling downstream of IRS-1. When endogenous beta-arrestin-1 was knocked down by transfection of beta-arrestin-1 small interfering RNA, insulin-induced IRS-1 degradation was enhanced. Insulin stimulated the association of IRS-1 and Mdm2, an E3 ubiquitin ligase, and this association was inhibited to overexpression of WT beta-arrestin-1, which led by decreased ubiquitin content of IRS-1, suggesting that both beta-arrestin-1 and IRS-1 competitively bind to Mdm2. In summary, we have found the following: (i) beta-arrestin-1 can alter insulin signaling by inhibiting insulin-induced proteasomal degradation of IRS-1; (ii) beta-arrestin-1 decreases the rate of ubiquitination of IRS-1 by competitively binding to endogenous Mdm2, an E3 ligase that can ubiquitinate IRS-1; (iii) dephosphorylation of S412 on beta-arrestin and the amino terminus of beta-arrestin-1 are required for this effect of beta-arrestin on IRS-1 degradation; and (iv) inhibition of beta-arrestin-1 leads to enhanced IRS-1 degradation and accentuated cellular insulin resistance.
Resumo:
G protein-coupled receptor kinase 2 (GRK2) phosphorylates activated G protein-coupled receptors (GPCRs), which ultimately leads to their desensitization and/or downregulation. The enzyme is recruited to the plasma membrane via the interaction of its carboxyl-terminal pleckstrin-homology (PH) domain with the beta and gamma subunits of heterotrimeric G proteins (Gbetagamma). An improved purification scheme for GRK2 has been developed, conditions under which GRK2 forms a complex with Gbeta(1)gamma(2) have been determined and the complex has been crystallized in CHAPS detergent micelles. Crystals of the GRK2-Gbetagamma complex belong to space group C2 and have unit-cell parameters a = 187.0, b = 72.1, c = 122.0 A, beta = 115.2 degrees. A complete data set has been collected to 3.2 A resolution with Cu Kalpha radiation.