863 resultados para Risorse umane, cambiamento organizzativo, HRMS, Information technology


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Public key cryptography, and with it,the ability to compute digital signatures, have made it possible for electronic commerce to flourish. It is thus unsurprising that the proposed Australian NECS will also utilise digital signatures in its system so as to provide a fully automated process from the creation of electronic land title instrument to the digital signing, and electronic lodgment of these instruments. This necessitates an analysis of the fraud risks raised by the usage of digital signatures because a compromise of the integrity of digital signatures will lead to a compromise of the Torrens system itself. This article will show that digital signatures may in fact offer greater security against fraud than handwritten signatures; but to achieve this, digital signatures require an infrastructure whereby each component is properly implemented and managed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider one-round key exchange protocols secure in the standard model. The security analysis uses the powerful security model of Canetti and Krawczyk and a natural extension of it to the ID-based setting. It is shown how KEMs can be used in a generic way to obtain two different protocol designs with progressively stronger security guarantees. A detailed analysis of the performance of the protocols is included; surprisingly, when instantiated with specific KEM constructions, the resulting protocols are competitive with the best previous schemes that have proofs only in the random oracle model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider one-round key exchange protocols secure in the standard model. The security analysis uses the powerful security model of Canetti and Krawczyk and a natural extension of it to the ID-based setting. It is shown how KEMs can be used in a generic way to obtain two different protocol designs with progressively stronger security guarantees. A detailed analysis of the performance of the protocols is included; surprisingly, when instantiated with specific KEM constructions, the resulting protocols are competitive with the best previous schemes that have proofs only in the random oracle model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider one-round key exchange protocols secure in the standard model. The security analysis uses the powerful security model of Canetti and Krawczyk and a natural extension of it to the ID-based setting. It is shown how KEMs can be used in a generic way to obtain two different protocol designs with progressively stronger security guarantees. A detailed analysis of the performance of the protocols is included; surprisingly, when instantiated with specific KEM constructions, the resulting protocols are competitive with the best previous schemes that have proofs only in the random oracle model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Business Process Management (BPM) has increased in popularity and maturity in recent years. Large enterprises engage use process management approaches to model, manage and refine repositories of process models that detail the whole enterprise. These process models can run to the thousands in number, and may contain large hierarchies of tasks and control structures that become cumbersome to maintain. Tools are therefore needed to effectively traverse this process model space in an efficient manner, otherwise the repositories remain hard to use, and thus are lowered in their effectiveness. In this paper we analyse a range of BPM tools for their effectiveness in handling large process models. We establish that the present set of commercial tools is lacking in key areas regarding visualisation of, and interaction with, large process models. We then present six tool functionalities for the development of advanced business process visualisation and interaction, presenting a design for a tool that will exploit the latest advances in 2D and 3D computer graphics to enable fast and efficient search, traversal and modification of process models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dealing with the ever-growing information overload in the Internet, Recommender Systems are widely used online to suggest potential customers item they may like or find useful. Collaborative Filtering is the most popular techniques for Recommender Systems which collects opinions from customers in the form of ratings on items, services or service providers. In addition to the customer rating about a service provider, there is also a good number of online customer feedback information available over the Internet as customer reviews, comments, newsgroups post, discussion forums or blogs which is collectively called user generated contents. This information can be used to generate the public reputation of the service providers’. To do this, data mining techniques, specially recently emerged opinion mining could be a useful tool. In this paper we present a state of the art review of Opinion Mining from online customer feedback. We critically evaluate the existing work and expose cutting edge area of interest in opinion mining. We also classify the approaches taken by different researchers into several categories and sub-categories. Each of those steps is analyzed with their strength and limitations in this paper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This special issue of the Journal of Community, Citizen’s and Third Sector Media and Communication (3CMedia) is based on selected presentations given at the 5th annual Making Links conference, held at The University of Melbourne from 11th to 13th November, 2008. Making Links (see also www.makinglinks.org.au) is a conference that seeks to engage interested people, organisations and groups working at the intersection of social action and information technology, including community workers, educators, trainers, not-for-profit organisations, people who work with marginalised groups, activists and researchers. One of the program streams at this conference was dedicated to the practice of digital storytelling (Lambert, 2002; Hartley & McWilliam, 2009).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a novel Hybrid Clustering approach for XML documents (HCX) that first determines the structural similarity in the form of frequent subtrees and then uses these frequent subtrees to represent the constrained content of the XML documents in order to determine the content similarity. The empirical analysis reveals that the proposed method is scalable and accurate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

XML document clustering is essential for many document handling applications such as information storage, retrieval, integration and transformation. An XML clustering algorithm should process both the structural and the content information of XML documents in order to improve the accuracy and meaning of the clustering solution. However, the inclusion of both kinds of information in the clustering process results in a huge overhead for the underlying clustering algorithm because of the high dimensionality of the data. This paper introduces a novel approach that first determines the structural similarity in the form of frequent subtrees and then uses these frequent subtrees to represent the constrained content of the XML documents in order to determine the content similarity. The proposed method reduces the high dimensionality of input data by using only the structure-constrained content. The empirical analysis reveals that the proposed method can effectively cluster even very large XML datasets and outperform other existing methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Public transportation is an environment with great potential for applying location-based services through mobile devices. The BusTracker study is looking at how real-time passenger information systems can provide a core platform to improve commuters’ experiences. These systems rely on mobile computing and GPS technology to provide accurate information on transport vehicle locations. BusTracker builds on this mobile computing platform and geospatial information. The pilot study is running on the open source BugLabs computing platform, using a GPS module for accurate location information.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Collaborative tagging can help users organize, share and retrieve information in an easy and quick way. For the collaborative tagging information implies user’s important personal preference information, it can be used to recommend personalized items to users. This paper proposes a novel tag-based collaborative filtering approach for recommending personalized items to users of online communities that are equipped with tagging facilities. Based on the distinctive three dimensional relationships among users, tags and items, a new similarity measure method is proposed to generate the neighborhood of users with similar tagging behavior instead of similar implicit ratings. The promising experiment result shows that by using the tagging information the proposed approach outperforms the standard user and item based collaborative filtering approaches.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The social tags in web 2.0 are becoming another important information source to profile users' interests and preferences for making personalized recommendations. However, the uncontrolled vocabulary causes a lot of problems to profile users accurately, such as ambiguity, synonyms, misspelling, low information sharing etc. To solve these problems, this paper proposes to use popular tags to represent the actual topics of tags, the content of items, and also the topic interests of users. A novel user profiling approach is proposed in this paper that first identifies popular tags, then represents users’ original tags using the popular tags, finally generates users’ topic interests based on the popular tags. A collaborative filtering based recommender system has been developed that builds the user profile using the proposed approach. The user profile generated using the proposed approach can represent user interests more accurately and the information sharing among users in the profile is also increased. Consequently the neighborhood of a user, which plays a crucial role in collaborative filtering based recommenders, can be much more accurately determined. The experimental results based on real world data obtained from Amazon.com show that the proposed approach outperforms other approaches.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The social tags in web 2.0 are becoming another important information source to profile users' interests and preferences to make personalized recommendations. To solve the problem of low information sharing caused by the free-style vocabulary of tags and the long tails of the distribution of tags and items, this paper proposes an approach to integrate the social tags given by users and the item taxonomy with standard vocabulary and hierarchical structure provided by experts to make personalized recommendations. The experimental results show that the proposed approach can effectively improve the information sharing and recommendation accuracy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Network-based Intrusion Detection Systems (NIDSs) analyse network traffic to detect instances of malicious activity. Typically, this is only possible when the network traffic is accessible for analysis. With the growing use of Virtual Private Networks (VPNs) that encrypt network traffic, the NIDS can no longer access this crucial audit data. In this paper, we present an implementation and evaluation of our approach proposed in Goh et al. (2009). It is based on Shamir's secret-sharing scheme and allows a NIDS to function normally in a VPN without any modifications and without compromising the confidentiality afforded by the VPN.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Association rule mining is one technique that is widely used when querying databases, especially those that are transactional, in order to obtain useful associations or correlations among sets of items. Much work has been done focusing on efficiency, effectiveness and redundancy. There has also been a focusing on the quality of rules from single level datasets with many interestingness measures proposed. However, with multi-level datasets now being common there is a lack of interestingness measures developed for multi-level and cross-level rules. Single level measures do not take into account the hierarchy found in a multi-level dataset. This leaves the Support-Confidence approach,which does not consider the hierarchy anyway and has other drawbacks, as one of the few measures available. In this paper we propose two approaches which measure multi-level association rules to help evaluate their interestingness. These measures of diversity and peculiarity can be used to help identify those rules from multi-level datasets that are potentially useful.