948 resultados para Reproducibility of results
Resumo:
BACKGROUND: An elevated early (E) to late (A) diastolic filling velocities ratio, typically seen in advanced diastolic dysfunction, has also been observed after cardioversion of atrial fibrillation as a consequence of the depressed left atrial (LA) contractility. We hypothesized that the impaired LA contractile function demonstrated after orthotopic cardiac transplantation (OCT) could also lead to this "pseudorestrictive" pattern. METHOD: E/A ratio related to the tissue Doppler early mitral annular velocity (Ea) as preload-independent index of LV relaxation was evaluated in all consecutive OCT patients between 2005 and 2007. RESULTS: The study population comprised 48 patients 97 ± 77 months after OCT. Thirty-two patients (67%) had an E/A ratio > 2. LV systolic function and myocardial relaxation assessed by the Ea velocity were similar compared to patients with normal ratio (61 ± 6% vs. 60 ± 12%, P = 0.854 and 15 ± 4 cm/s vs. 14 ± 3 cm/s, r = 0.15, P = 0.323, respectively). On the other hand, the proportion of the recipient and donor LA cuffs as estimated by the recipient/global LA area ratio and the LA emptying fraction significantly correlated with the E/A ratio (r = 0.40, P = 0.005 and r =-0.33, P = 0.022, respectively). CONCLUSION: Our study shows that there is a high prevalence of elevated E/A ratio after standard OCT which seems mainly related to reduced LA contractility. Recognition of this "pseudorestrictive" pattern may avoid misdiagnosis of diastolic dysfunction.
Resumo:
OBJECTIVE: To describe a method to obtain a profile of the duration and intensity (speed) of walking periods over 24 hours in women under free-living conditions. DESIGN: A new method based on accelerometry was designed for analyzing walking activity. In order to take into account inter-individual variability of acceleration, an individual calibration process was used. Different experiments were performed to highlight the variability of acceleration vs walking speed relationship, to analyze the speed prediction accuracy of the method, and to test the assessment of walking distance and duration over 24-h. SUBJECTS: Twenty-eight women were studied (mean+/-s.d.) age: 39.3+/-8.9 y; body mass: 79.7+/-11.1 kg; body height: 162.9+/-5.4 cm; and body mass index (BMI) 30.0+/-3.8 kg/m(2). RESULTS: Accelerometer output was significantly correlated with speed during treadmill walking (r=0.95, P<0.01), and short unconstrained walks (r=0.86, P<0.01), although with a large inter-individual variation of the regression parameters. By using individual calibration, it was possible to predict walking speed on a standard urban circuit (predicted vs measured r=0.93, P<0.01, s.e.e.=0.51 km/h). In the free-living experiment, women spent on average 79.9+/-36.0 (range: 31.7-168.2) min/day in displacement activities, from which discontinuous short walking activities represented about 2/3 and continuous ones 1/3. Total walking distance averaged 2.1+/-1.2 (range: 0.4-4.7) km/day. It was performed at an average speed of 5.0+/-0.5 (range: 4.1-6.0) km/h. CONCLUSION: An accelerometer measuring the anteroposterior acceleration of the body can estimate walking speed together with the pattern, intensity and duration of daily walking activity.
Resumo:
The increasing popularity of evidence-based practice (EBP) requires that nurses take a stand regarding this type of practice. This positioning rests on knowledge of EBP, however this notion varies by discipline and many definitions exist even within the nursing discipline. An improved understanding of the basic tenets of this type of practice is thus essential. This first, of a series of two articles describes the origin of EBP as well as various definitions, it also presents the major criticisms raised and takes a look at the impact of the increased tendency towards EBP on professional practice.
Resumo:
BACKGROUND: The aim of this study was to explore the predictive value of longitudinal self-reported adherence data on viral rebound. METHODS: Individuals in the Swiss HIV Cohort Study on combined antiretroviral therapy (cART) with RNA <50 copies/ml over the previous 3 months and who were interviewed about adherence at least once prior to 1 March 2007 were eligible. Adherence was defined in terms of missed doses of cART (0, 1, 2 or >2) in the previous 28 days. Viral rebound was defined as RNA >500 copies/ml. Cox regression models with time-independent and -dependent covariates were used to evaluate time to viral rebound. RESULTS: A total of 2,664 individuals and 15,530 visits were included. Across all visits, missing doses were reported as follows: 1 dose 14.7%, 2 doses 5.1%, >2 doses 3.8% taking <95% of doses 4.5% and missing > or =2 consecutive doses 3.2%. In total, 308 (11.6%) patients experienced viral rebound. After controlling for confounding variables, self-reported non-adherence remained significantly associated with the rate of occurrence of viral rebound (compared with zero missed doses: 1 dose, hazard ratio [HR] 1.03, 95% confidence interval [CI] 0.72-1.48; 2 doses, HR 2.17, 95% CI 1.46-3.25; >2 doses, HR 3.66, 95% CI 2.50-5.34). Several variables significantly associated with an increased risk of viral rebound irrespective of adherence were identified: being on a protease inhibitor or triple nucleoside regimen (compared with a non-nucleoside reverse transcriptase inhibitor), >5 previous cART regimens, seeing a less-experienced physician, taking co-medication, and a shorter time virally suppressed. CONCLUSIONS: A simple self-report adherence questionnaire repeatedly administered provides a sensitive measure of non-adherence that predicts viral rebound.
Resumo:
BACKGROUND/AIM: Raloxifene is the first selective estrogen receptor modulator that has been approved for the treatment and prevention of osteoporosis in postmenopausal women in Europe and in the US. Although raloxifene reduces the risk of invasive breast cancer in postmenopausal women with osteoporosis and in postmenopausal women at high risk for invasive breast cancer, it is approved in that indication in the US but not in the EU. The aim was to characterize the clinical profiles of postmenopausal women expected to benefit most from therapy with raloxifene based on published scientific evidence to date. METHODS: Key individual patient characteristics relevant to the prescription of raloxifene in daily practice were defined by a board of Swiss experts in the fields of menopause and metabolic bone diseases and linked to published scientific evidence. Consensus was reached about translating these insights into daily practice. RESULTS: Through estrogen agonistic effects on bone, raloxifene reduces biochemical markers of bone turnover to premenopausal levels, increases bone mineral density (BMD) at the lumbar spine, proximal femur, and total body, and reduces vertebral fracture risk in women with osteopenia or osteoporosis with and without prevalent vertebral fracture. Through estrogen antagonistic effects on breast tissue, raloxifene reduces the risk of invasive estrogen-receptor positive breast cancer in postmenopausal women with osteoporosis and in postmenopausal women at high risk for invasive breast cancer. Finally, raloxifene increases the incidence of hot flushes, the risk of venous thromboembolic events, and the risk of fatal stroke in postmenopausal women at increased risk for coronary heart disease. Postmenopausal women in whom the use of raloxifene is considered can be categorized in a 2 × 2 matrix reflecting their bone status (osteopenic or osteoporotic based on their BMD T-score by dual energy X-ray absorptiometry) and their breast cancer risk (low or high based on the modified Gail model). Women at high risk of breast cancer should be considered for treatment with raloxifene. CONCLUSION: Postmenopausal women between 50 and 70 years of age without climacteric symptoms with either osteopenia or osteoporosis should be evaluated with regard to their breast cancer risk and considered for treatment with raloxifene within the framework of its contraindications and precautions.
Resumo:
Three-dimensional imaging and quantification of myocardial function are essential steps in the evaluation of cardiac disease. We propose a tagged magnetic resonance imaging methodology called zHARP that encodes and automatically tracks myocardial displacement in three dimensions. Unlike other motion encoding techniques, zHARP encodes both in-plane and through-plane motion in a single image plane without affecting the acquisition speed. Postprocessing unravels this encoding in order to directly track the 3-D displacement of every point within the image plane throughout an entire image sequence. Experimental results include a phantom validation experiment, which compares zHARP to phase contrast imaging, and an in vivo study of a normal human volunteer. Results demonstrate that the simultaneous extraction of in-plane and through-plane displacements from tagged images is feasible.
Resumo:
At high magnetic field strengths (≥ 3T), the radiofrequency wavelength used in MRI is of the same order of magnitude of (or smaller than) the typical sample size, making transmit magnetic field (B1+) inhomogeneities more prominent. Methods such as radiofrequency-shimming and transmit SENSE have been proposed to mitigate these undesirable effects. A prerequisite for such approaches is an accurate and rapid characterization of the B1+ field in the organ of interest. In this work, a new phase-sensitive three-dimensional B1+-mapping technique is introduced that allows the acquisition of a 64 × 64 × 8 B1+-map in ≈ 20 s, yielding an accurate mapping of the relative B1+ with a 10-fold dynamic range (0.2-2 times the nominal B1+). Moreover, the predominant use of low flip angle excitations in the presented sequence minimizes specific absorption rate, which is an important asset for in vivo B1+-shimming procedures at high magnetic fields. The proposed methodology was validated in phantom experiments and demonstrated good results in phantom and human B1+-shimming using an 8-channel transmit-receive array.
Resumo:
Two methods of differential isotopic coding of carboxylic groups have been developed to date. The first approach uses d0- or d3-methanol to convert carboxyl groups into the corresponding methyl esters. The second relies on the incorporation of two 18O atoms into the C-terminal carboxylic group during tryptic digestion of proteins in H(2)18O. However, both methods have limitations such as chromatographic separation of 1H and 2H derivatives or overlap of isotopic distributions of light and heavy forms due to small mass shifts. Here we present a new tagging approach based on the specific incorporation of sulfanilic acid into carboxylic groups. The reagent was synthesized in a heavy form (13C phenyl ring), showing no chromatographic shift and an optimal isotopic separation with a 6 Da mass shift. Moreover, sulfanilic acid allows for simplified fragmentation in matrix-assisted laser desorption/ionization (MALDI) due the charge fixation of the sulfonate group at the C-terminus of the peptide. The derivatization is simple, specific and minimizes the number of sample treatment steps that can strongly alter the sample composition. The quantification is reproducible within an order of magnitude and can be analyzed either by electrospray ionization (ESI) or MALDI. Finally, the method is able to specifically identify the C-terminal peptide of a protein by using GluC as the proteolytic enzyme.
Resumo:
Even 30 years after its first publication the Glasgow Coma Scale (GCS) is still used worldwide to describe and assess coma. The GCS consists of three components, the ocular, motor and verbal response to standardized stimulation, and is used as a severity of illness indicator for coma of various origins. The GCS facilitates information transfer and monitoring changes in coma. In addition, it is used as a triage tool in patients with traumatic brain injury. Its prognostic value regarding the outcome after a traumatic brain injury still lacks evidence. One of the main problems is the evaluation of the GCS in sedated, paralysed and/or intubated patients. A multitude of pseudoscores exists but a universal definition has yet to be defined.
Resumo:
PURPOSE: To improve the tag persistence throughout the whole cardiac cycle by providing a constant tag-contrast throughout all the cardiac phases when using balanced steady-state free precession (bSSFP) imaging. MATERIALS AND METHODS: The flip angles of the imaging radiofrequency pulses were optimized to compensate for the tagging contrast-to-noise ratio (Tag-CNR) fading at later cardiac phases in bSSFP imaging. Complementary spatial modulation of magnetization (CSPAMM) tagging was implemented to improve the Tag-CNR. Numerical simulations were performed to examine the behavior of the Tag-CNR with the proposed method, and to compare the resulting Tag-CNR with that obtained from the more commonly used spoiled gradient echo (SPGR) imaging. A gel phantom, as well as five healthy human volunteers, were scanned on a 1.5T scanner using bSSFP imaging with and without the proposed technique. The phantom was also scanned with SPGR imaging. RESULTS: With the proposed technique, the Tag-CNR remained almost constant during the whole cardiac cycle. Using bSSFP imaging, the Tag-CNR was about double that of SPGR. CONCLUSION: The tag persistence was significantly improved when the proposed method was applied, with better Tag-CNR during the diastolic cardiac phase. The improved Tag-CNR will support automated tagging analysis and quantification methods.
Resumo:
Intensity-modulated radiotherapy (IMRT) treatment plan verification by comparison with measured data requires having access to the linear accelerator and is time consuming. In this paper, we propose a method for monitor unit (MU) calculation and plan comparison for step and shoot IMRT based on the Monte Carlo code EGSnrc/BEAMnrc. The beamlets of an IMRT treatment plan are individually simulated using Monte Carlo and converted into absorbed dose to water per MU. The dose of the whole treatment can be expressed through a linear matrix equation of the MU and dose per MU of every beamlet. Due to the positivity of the absorbed dose and MU values, this equation is solved for the MU values using a non-negative least-squares fit optimization algorithm (NNLS). The Monte Carlo plan is formed by multiplying the Monte Carlo absorbed dose to water per MU with the Monte Carlo/NNLS MU. Several treatment plan localizations calculated with a commercial treatment planning system (TPS) are compared with the proposed method for validation. The Monte Carlo/NNLS MUs are close to the ones calculated by the TPS and lead to a treatment dose distribution which is clinically equivalent to the one calculated by the TPS. This procedure can be used as an IMRT QA and further development could allow this technique to be used for other radiotherapy techniques like tomotherapy or volumetric modulated arc therapy.
Resumo:
BACKGROUND: Legionella species cause severe forms of pneumonia with high mortality and complication rates. Accurate clinical predictors to assess the likelihood of Legionella community-acquired pneumonia (CAP) in patients presenting to the emergency department are lacking. METHODS: We retrospectively compared clinical and laboratory data of 82 consecutive patients with Legionella CAP with 368 consecutive patients with non-Legionella CAP included in two studies at the same institution. RESULTS: In multivariate logistic regression analysis we identified six parameters, namely high body temperature (OR 1.67, p < 0.0001), absence of sputum production (OR 3.67, p < 0.0001), low serum sodium concentrations (OR 0.89, p = 0.011), high levels of lactate dehydrogenase (OR 1.003, p = 0.007) and C-reactive protein (OR 1.006, p < 0.0001) and low platelet counts (OR 0.991, p < 0.0001), as independent predictors of Legionella CAP. Using optimal cut off values of these six parameters, we calculated a diagnostic score for Legionella CAP. The median score was significantly higher in Legionella CAP as compared to patients without Legionella (4 (IQR 3-4) vs 2 (IQR 1-2), p < 0.0001) with a respective odds ratio of 3.34 (95%CI 2.57-4.33, p < 0.0001). Receiver operating characteristics showed a high diagnostic accuracy of this diagnostic score (AUC 0.86 (95%CI 0.81-0.90), which was better as compared to each parameter alone. Of the 191 patients (42%) with a score of 0 or 1 point, only 3% had Legionella pneumonia. Conversely, of the 73 patients (16%) with > or =4 points, 66% of patients had Legionella CAP. CONCLUSION: Six clinical and laboratory parameters embedded in a simple diagnostic score accurately identified patients with Legionella CAP. If validated in future studies, this score might aid in the management of suspected Legionella CAP.
Resumo:
BACKGROUND: In patients with Kawasaki disease, serial evaluation of the distribution and size of coronary artery aneurysms (CAA) is necessary for risk stratification and therapeutic management. Although transthoracic echocardiography is often sufficient for this purpose initially, visualization of the coronary arteries becomes progressively more difficult as children grow. We sought to prospectively compare coronary magnetic resonance angiography (MRA) and x-ray coronary angiography findings in patients with CAA caused by Kawasaki disease. METHODS AND RESULTS: Six subjects (age 10 to 25 years) with known CAA from Kawasaki disease underwent coronary MRA using a free-breathing T2-prepared 3D bright blood segmented k-space gradient echo sequence with navigator gating and tracking. All patients underwent x-ray coronary angiography within a median of 75 days (range, 1 to 359 days) of coronary MRA. There was complete agreement between MRA and x-ray angiography in the detection of CAA (n=11), coronary artery stenoses (n=2), and coronary occlusions (n=2). Excellent agreement was found between the 2 techniques for detection of CAA maximal diameter (mean difference=0.4 +/- 0.6 mm) and length (mean difference=1.4 +/- 1.6 mm). The 2 methods showed very similar results for proximal coronary artery diameter (mean difference=0.2 +/- 0.5 mm) and CAA distance from the ostia (mean difference=0.1 +/- 1.5 mm). CONCLUSION: Free-breathing 3D coronary MRA accurately defines CAA in patients with Kawasaki disease. This technique may provide a non-invasive alternative when transthoracic echocardiography image quality is insufficient, thereby reducing the need for serial x-ray coronary angiography in this patient group.