996 resultados para Red shifts


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polymorphous silicon (pm-Si:H) films have been prepared by a new regime of plasma enhanced chemical vapour deposition in the region adjacent of phase transition from amorphous to microcrystalline state. Comparing to the conventional amorphous silicon (a-Si:H), the pm-Si:H has higher photoconductivity (sigma(ph)), better stability, and a broader light spectral response range in the longer wavelength range. It can be found from Raman spectra that there is a notable improvement in the medium range order. There are a blue shift for the stretching mode of IR spectra and a red shift for the wagging mode. The shifts are attributed to the variation of the microstructure. By using pm-Si:H film as intrinsic layer, a p-i-n junction solar cell was prepared with the initial efficiency of 8.51% and a stabilized efficiency of 8.01% (AM1.5, 100mw/cm(2)) at room temperature (T-R).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of the growth temperature on the properties of InAlAs/AlGaAs quantum dots grown on GaAs(100) substrates is investigated. The optical efficiency and structural uniformity are improved by increasing the growth temperature from 530 to 560 degreesC. The improvements of InAlAs/AlGaAs quantum-dot characteristics could be explained by suppressing the incorporation of oxygen and the formation of group-III vacancies. Furthermore, edge-emitting laser diodes with six quantum-dot layers grown at 560 degreesC have been fabricated. Lasing occurs via the ground state at 725 nm, with a room-temperature threshold current density of 3.9 kA/cm(2), significantly better than previously reported values for this quantum-dot systems. (C) 2002 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optical properties of InGaAs/GaAs self-organized quantum dots (QDs) structures covered by InxGa1-x As capping layers with different In contents chi ranging from 0. 0 (i.e., GaAs) to 0. 3 were investigated systematically by photoluminescence (PL) measurements. Red-shift of the PL peak energies of the InAs QDs covered by InxGa1-xAs layers with narrower linewidth and less shifts of the PL emissions via variations of the measurement temperatures were observed compared with that covered by GaAs layers. Calculation and structural measurements confirm that the red-shift of the PL peaks are mainly due to strain reduction and suppression of the In/Ga intermixing due to the InxGa1-xAs cover layer, leading to better size uniformity and thus narrowing the PL linewidth of the QDs. 1. 3 mum wavelength emission with very narrow linewidth of only 19. 2 meV at room temperature was successfully obtained from the In0.5Ga0.5As/GaAs QDs covered by the In0.2Ga0.8As layer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated the photoluminescence (PL) of self-assembled In0.55Al0.45As/Al0.5Ga0.5As quantum dots (QDs) grown on (311)A GaAs substrate. The PL peak at 10 K shifts to lower energy by about 30 meV when the excitation power decreases by two orders of magnitude. It has a red-shift under pressure, that is the character of X-like transition. Moreover, its peak energy is smaller than the indirect gap of bulk Al0.5Ga0.5As and In0.55Al0.45As. We then attribute that peak to the type-II transition between electrons in X valley of Al0.5Ga0.5As and heavy holes in In0.55Al0.45As QDs. A new peak appears at the higher energy when temperature is increased above 70 K. It shifts to higher energy with increasing pressure, corresponding to the transition from conduction Gamma band to valence band in QDs. The measurements demonstrate that our In0.55Al0.45As/Al0.5Ga0.5As quantum dots are type-II QDs with X-like conduction-band minimum. To interpret the second X-related peak emerged under pressure, we discuss the X-valley split in QDs briefly. (C) 2000 American Institute of Physics. [S0003-6951(00)04622-2].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quantum-confined Stark shifts in SiGe/Si type-I multiple quantum wells are suggested by the bias dependence of the photocurrent spectra of p-i-n photodiodes. Both Stark redshift and blueshift have been observed for the same sample in the different ranges of electric fields applied to the quantum wells. The turnaround point corresponds to a certain electric field (named "critical" field). This phenomenon was generally predicted by Austin in 1985 [Phys. Rev. B 31, 5569 (1985)] and calculated in detail for SiGe quantum structure by Kim recently [Thin Solid Films 321, 215 (1998)]. The critical electric field obtained from the photocurrent spectra is in reasonable agreement with the theoretical prediction. (C) 2000 American Institute of Physics. [S0021-8979(00)03711-7].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Red-emitting at about 640 nm from self-assembled In0.55Al0.45As/Al0.5Ga0.5As quantum dots grown on GaAs substrate by molecular beam epitaxy are demonstrated, A double-peak structure of photoluminescence (PL) spectra from quantum dots was observed, and a bimodal distribution of dot sizes was also confirmed by an atomic force micrograph (AFM) image for uncapped sample. From the temperature and excitation intensity dependence of PL spectra, it is found that the double-peak structure of PL spectra from quantum dots is strongly correlated to the two predominant quantum dot families. Taking into account the quantum-size effect on the peak energy, it is proposed that the high (low) energy peak results from a smaller (larger) dot family, and this result is identical to the statistical distribution of dot lateral size from the AFM image.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of growth interruption on the InAs deposition and its subsequent growth as self-assembled island structures, in particular the material transport process of the InAs layers has been investigated by photoluminescence and transmission electron microscopy measurements. InAs material in structures with only coherent islands transfers from the wetting layer to the formed islands and the growth interruption causes a red shift of PL peak energy. On the other hand, the PL peak shifts to higher energy in structures containing simultaneously coherent and noncoherent islands with dislocations. In this case, the noncoherent islands capture InAs material from the surrounding wetting layer as well as coherent islands, which casues a reduction in the size of these islands. The variations in the PL intensity and line width are also discussed. (C) 1998 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introducing the growth interruption between the InAs deposition and subsequent GaAs growth in self-assembled quantum dot (QD) structures, the material transport process in the InAs layers has been investigated by photoluminescence and transmission electron microscopy measurement. InAs material in structures without misfit dislocations transfers from the wetting layer to QDs corresponding to the red-shift of PL peak energy due to interruption. On the other hand, the PL peak shifts to higher energy in the structures with dislocations. In this case, the misfit dislocations would capture the InAs material from the surrounding wetting layer and coherent islands leading to the reduction of the size of these QDs. The variations in the PL intensity and Linewidth are also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The optical properties of Au nanoparticles deposited on thermochromic thin films of VO2 are investigated using spectroscopy. A localized modification on the transmittance spectrum of VO2 film is formed due to the presence of Au nanoparticles which exhibit localized surface plasmon resonance (LSPR) in the visible-near IR region. The position of the modification wavelength region shows a strong dependence on the Au mass thickness and shifts toward the red as it increases. On the other hand, it was found that the LSPR of Au nanoparticles can be thermally tunable because of the thermochromism of the supporting material of VO2. The LSPR wavelength, lambda(SPR), shifts to the blue with increasing temperature, and shifts back to the red as temperature decreases. A fine tuning is achieved when the temperature is increased in a stepwise manner.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on the utilization of localized surface plasmon resonance (LSPR) of Ag nanoparticles to tailor the optical properties Of VO2 thin film. Interaction of nano-Ag with incident light yields a salient absorption band in the visible-near IR region and modifies the spectrum Of VO2 locally. The wavelength of modification occurs in a limited spectral region rather than affects the full spectrum. The wavelength of modification shows a strong dependence on the metal nanoparticle size and shifts toward the red as the particle size or the mass thickness of nano-Ag increases. Also, we found that the wavelength can be shifted into the IR further by introducing a thin layer of TiO2 onto the nano-Ag. Interestingly, with the help of LSPR effects the VO2 film exhibits an anomalous thermochromic behavior in the modification wavelength region, which may be useful in optical switching applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermal tuning of the localized surface plasmon resonance (LSPR) of Ag nanoparticles on a thermochromic thin film of VO2 was studied experimentally. The tuning is strongly temperature dependent and thermally reversible. The LSPR wavelength lambda(SPR) shifts to the blue with increasing temperature from 30 to 80 degrees C, and shifts back to the red as temperature decreases. A smart tuning is achievable on condition that the temperature is controlled in a stepwise manner. The tunable wavelength range depends on the particle size or the mass thickness of the metal nanoparticle film. Further, the tunability was found to be enhanced significantly when a layer of TiO2 was introduced to overcoat the Ag nanoparticles, yielding a marked sensitivity factor Delta lambda(SPR)/Delta n, of as large as 480 nm per refractive index unit (n) at the semiconductor phase of VO2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is predicted that large and opposite generalized Goos-Hanchen (GGH) shifts may occur simultaneously for TE and TM light beams upon reflection from an asymmetric double-prism configuration when the angle of incidence is below but near the critical angle for total reflection, which may lead to interesting applications in optical devices and integrated optics. Numerical simulations show that the magnitude of the GGH shift can be of the order of beam's width.