931 resultados para Recent Structural Models
Resumo:
It is well accepted that structural studies with model membranes are of considerable value in understanding the structure of biological membranes. Many studies with models of pure phospholipids have been done; but the effects of divalent cations and protein on these models would make these studies more applicable to intact membrane. The present study, performed with above view, is a structural analysis of divalent io~cardio1ipin complexes using the technique of x-ray diffraction. Cardiolipin, precipitated from dilute solution by divalent ionscalcium, magnesium and barium, contains little water and the structure formed is similar to the structure of pure cardiolipin with low water content. The calcium-cardiolipin complex forms a pure hexagonal type II phase that exists from 40 to 400 C. The molar ratio of calcium and cardiolipin in the complex is 1 : 1. Cardiolipin, precipitated with magnesium and barium forms two co-existing phases, lamellar and hexagonal, the relative quantity of the two phases being dependent on temperature. The hexagonal phase type II consisting of water filled channels formed by adding calcium to cardiolipin may have a remarkable permeability property in intact membrane. Pure cardiolipin and insulin at pH 3.0 and 4.0 precipitate but form no organised structure. Lecithin/cardiolipin and insulin precipitated at pH 3.0 give a pure lamellar phase. As the lecithin/cardiolipin molar ratio changes from 93/7 to SO/50, (a) the repeat distance of the lamellar changes from 72.8 X to 68.2 A; (b) the amount of protein bound increases in such a way that cardiolipin/insulin molar ratio in the complex reaches a maximum constant value at lecithin/cardiolipin molar ratio 70/30. A structural model based on these data shows that the molecular arrangement of lipid and protein is a lipid bilayer coated with protein molecules. The lipid-protein interaction is chiefly electrostatic and little, if any, hydrophobic bonding occurs in this particular system. So, the proposed model is essentially the same as Davson-Daniellifs model of biological membrane.
Resumo:
N-heterocyclic carbenes (NHCs) have undergone rapid development in recent years. Due to their strong a-electron donation and structural variability properties, NHCs are becoming a major class of ligands in organometallic chemistry. Compared with the other two types of NHCs (imidazolylidenes and imidazolinylidenes), benzimidazolylidenes have not been well represented. Limited synthetic approaches may impede the development ofbenzimidazolylidenes. This thesis is focused on the synthesis of phenanthroline-derived benzimidazolylidene ligands and their metal complexes. A series of benzimidazolylidene-iridium complexes were synthesized and characterized spectroscopically and crystallographic ally. All of the new complexes showed varying degrees of catalytic activity and enantioselectivity toward transfer hydrogenation and asymmetric hydrogenation. The best results were achieved in hydrogenation of methyl-2-acetamidoacrylate, which afforded (-)-(R)-methyl-2-acetamidopropanoate in 97% yield and 81 % ee.
Resumo:
This thesis examines the performance of Canadian fixed-income mutual funds in the context of an unobservable market factor that affects mutual fund returns. We use various selection and timing models augmented with univariate and multivariate regime-switching structures. These models assume a joint distribution of an unobservable latent variable and fund returns. The fund sample comprises six Canadian value-weighted portfolios with different investing objectives from 1980 to 2011. These are the Canadian fixed-income funds, the Canadian inflation protected fixed-income funds, the Canadian long-term fixed-income funds, the Canadian money market funds, the Canadian short-term fixed-income funds and the high yield fixed-income funds. We find strong evidence that more than one state variable is necessary to explain the dynamics of the returns on Canadian fixed-income funds. For instance, Canadian fixed-income funds clearly show that there are two regimes that can be identified with a turning point during the mid-eighties. This structural break corresponds to an increase in the Canadian bond index from its low values in the early 1980s to its current high values. Other fixed-income funds results show latent state variables that mimic the behaviour of the general economic activity. Generally, we report that Canadian bond fund alphas are negative. In other words, fund managers do not add value through their selection abilities. We find evidence that Canadian fixed-income fund portfolio managers are successful market timers who shift portfolio weights between risky and riskless financial assets according to expected market conditions. Conversely, Canadian inflation protected funds, Canadian long-term fixed-income funds and Canadian money market funds have no market timing ability. We conclude that these managers generally do not have positive performance by actively managing their portfolios. We also report that the Canadian fixed-income fund portfolios perform asymmetrically under different economic regimes. In particular, these portfolio managers demonstrate poorer selection skills during recessions. Finally, we demonstrate that the multivariate regime-switching model is superior to univariate models given the dynamic market conditions and the correlation between fund portfolios.
Object-Oriented Genetic Programming for the Automatic Inference of Graph Models for Complex Networks
Resumo:
Complex networks are systems of entities that are interconnected through meaningful relationships. The result of the relations between entities forms a structure that has a statistical complexity that is not formed by random chance. In the study of complex networks, many graph models have been proposed to model the behaviours observed. However, constructing graph models manually is tedious and problematic. Many of the models proposed in the literature have been cited as having inaccuracies with respect to the complex networks they represent. However, recently, an approach that automates the inference of graph models was proposed by Bailey [10] The proposed methodology employs genetic programming (GP) to produce graph models that approximate various properties of an exemplary graph of a targeted complex network. However, there is a great deal already known about complex networks, in general, and often specific knowledge is held about the network being modelled. The knowledge, albeit incomplete, is important in constructing a graph model. However it is difficult to incorporate such knowledge using existing GP techniques. Thus, this thesis proposes a novel GP system which can incorporate incomplete expert knowledge that assists in the evolution of a graph model. Inspired by existing graph models, an abstract graph model was developed to serve as an embryo for inferring graph models of some complex networks. The GP system and abstract model were used to reproduce well-known graph models. The results indicated that the system was able to evolve models that produced networks that had structural similarities to the networks generated by the respective target models.
Resumo:
A wide range of tests for heteroskedasticity have been proposed in the econometric and statistics literature. Although a few exact homoskedasticity tests are available, the commonly employed procedures are quite generally based on asymptotic approximations which may not provide good size control in finite samples. There has been a number of recent studies that seek to improve the reliability of common heteroskedasticity tests using Edgeworth, Bartlett, jackknife and bootstrap methods. Yet the latter remain approximate. In this paper, we describe a solution to the problem of controlling the size of homoskedasticity tests in linear regression contexts. We study procedures based on the standard test statistics [e.g., the Goldfeld-Quandt, Glejser, Bartlett, Cochran, Hartley, Breusch-Pagan-Godfrey, White and Szroeter criteria] as well as tests for autoregressive conditional heteroskedasticity (ARCH-type models). We also suggest several extensions of the existing procedures (sup-type of combined test statistics) to allow for unknown breakpoints in the error variance. We exploit the technique of Monte Carlo tests to obtain provably exact p-values, for both the standard and the new tests suggested. We show that the MC test procedure conveniently solves the intractable null distribution problem, in particular those raised by the sup-type and combined test statistics as well as (when relevant) unidentified nuisance parameter problems under the null hypothesis. The method proposed works in exactly the same way with both Gaussian and non-Gaussian disturbance distributions [such as heavy-tailed or stable distributions]. The performance of the procedures is examined by simulation. The Monte Carlo experiments conducted focus on : (1) ARCH, GARCH, and ARCH-in-mean alternatives; (2) the case where the variance increases monotonically with : (i) one exogenous variable, and (ii) the mean of the dependent variable; (3) grouped heteroskedasticity; (4) breaks in variance at unknown points. We find that the proposed tests achieve perfect size control and have good power.
Resumo:
We extend the class of M-tests for a unit root analyzed by Perron and Ng (1996) and Ng and Perron (1997) to the case where a change in the trend function is allowed to occur at an unknown time. These tests M(GLS) adopt the GLS detrending approach of Dufour and King (1991) and Elliott, Rothenberg and Stock (1996) (ERS). Following Perron (1989), we consider two models : one allowing for a change in slope and the other for both a change in intercept and slope. We derive the asymptotic distribution of the tests as well as that of the feasible point optimal tests PT(GLS) suggested by ERS. The asymptotic critical values of the tests are tabulated. Also, we compute the non-centrality parameter used for the local GLS detrending that permits the tests to have 50% asymptotic power at that value. We show that the M(GLS) and PT(GLS) tests have an asymptotic power function close to the power envelope. An extensive simulation study analyzes the size and power in finite samples under various methods to select the truncation lag for the autoregressive spectral density estimator. An empirical application is also provided.
Resumo:
We propose finite sample tests and confidence sets for models with unobserved and generated regressors as well as various models estimated by instrumental variables methods. The validity of the procedures is unaffected by the presence of identification problems or \"weak instruments\", so no detection of such problems is required. We study two distinct approaches for various models considered by Pagan (1984). The first one is an instrument substitution method which generalizes an approach proposed by Anderson and Rubin (1949) and Fuller (1987) for different (although related) problems, while the second one is based on splitting the sample. The instrument substitution method uses the instruments directly, instead of generated regressors, in order to test hypotheses about the \"structural parameters\" of interest and build confidence sets. The second approach relies on \"generated regressors\", which allows a gain in degrees of freedom, and a sample split technique. For inference about general possibly nonlinear transformations of model parameters, projection techniques are proposed. A distributional theory is obtained under the assumptions of Gaussian errors and strictly exogenous regressors. We show that the various tests and confidence sets proposed are (locally) \"asymptotically valid\" under much weaker assumptions. The properties of the tests proposed are examined in simulation experiments. In general, they outperform the usual asymptotic inference methods in terms of both reliability and power. Finally, the techniques suggested are applied to a model of Tobin’s q and to a model of academic performance.
Resumo:
The GARCH and Stochastic Volatility paradigms are often brought into conflict as two competitive views of the appropriate conditional variance concept : conditional variance given past values of the same series or conditional variance given a larger past information (including possibly unobservable state variables). The main thesis of this paper is that, since in general the econometrician has no idea about something like a structural level of disaggregation, a well-written volatility model should be specified in such a way that one is always allowed to reduce the information set without invalidating the model. To this respect, the debate between observable past information (in the GARCH spirit) versus unobservable conditioning information (in the state-space spirit) is irrelevant. In this paper, we stress a square-root autoregressive stochastic volatility (SR-SARV) model which remains true to the GARCH paradigm of ARMA dynamics for squared innovations but weakens the GARCH structure in order to obtain required robustness properties with respect to various kinds of aggregation. It is shown that the lack of robustness of the usual GARCH setting is due to two very restrictive assumptions : perfect linear correlation between squared innovations and conditional variance on the one hand and linear relationship between the conditional variance of the future conditional variance and the squared conditional variance on the other hand. By relaxing these assumptions, thanks to a state-space setting, we obtain aggregation results without renouncing to the conditional variance concept (and related leverage effects), as it is the case for the recently suggested weak GARCH model which gets aggregation results by replacing conditional expectations by linear projections on symmetric past innovations. Moreover, unlike the weak GARCH literature, we are able to define multivariate models, including higher order dynamics and risk premiums (in the spirit of GARCH (p,p) and GARCH in mean) and to derive conditional moment restrictions well suited for statistical inference. Finally, we are able to characterize the exact relationships between our SR-SARV models (including higher order dynamics, leverage effect and in-mean effect), usual GARCH models and continuous time stochastic volatility models, so that previous results about aggregation of weak GARCH and continuous time GARCH modeling can be recovered in our framework.
Resumo:
We discuss statistical inference problems associated with identification and testability in econometrics, and we emphasize the common nature of the two issues. After reviewing the relevant statistical notions, we consider in turn inference in nonparametric models and recent developments on weakly identified models (or weak instruments). We point out that many hypotheses, for which test procedures are commonly proposed, are not testable at all, while some frequently used econometric methods are fundamentally inappropriate for the models considered. Such situations lead to ill-defined statistical problems and are often associated with a misguided use of asymptotic distributional results. Concerning nonparametric hypotheses, we discuss three basic problems for which such difficulties occur: (1) testing a mean (or a moment) under (too) weak distributional assumptions; (2) inference under heteroskedasticity of unknown form; (3) inference in dynamic models with an unlimited number of parameters. Concerning weakly identified models, we stress that valid inference should be based on proper pivotal functions —a condition not satisfied by standard Wald-type methods based on standard errors — and we discuss recent developments in this field, mainly from the viewpoint of building valid tests and confidence sets. The techniques discussed include alternative proposed statistics, bounds, projection, split-sampling, conditioning, Monte Carlo tests. The possibility of deriving a finite-sample distributional theory, robustness to the presence of weak instruments, and robustness to the specification of a model for endogenous explanatory variables are stressed as important criteria assessing alternative procedures.
Resumo:
In the past quarter century, there has been a dramatic shift of focus in social choice theory, with structured sets of alternatives and restricted domains of the sort encountered in economic problems coming to the fore. This article provides an overview of some of the recent contributions to four topics in normative social choice theory in which economic modelling has played a prominent role: Arrovian social choice theory on economic domains, variable-population social choice, strategy-proof social choice, and axiomatic models of resource allocation.
Resumo:
Dans cette thèse, je me suis intéressé aux effets des fluctuations du prix de pétrole sur l'activité macroéconomique selon la cause sous-jacente ces fluctuations. Les modèles économiques utilisés dans cette thèse sont principalement les modèles d'équilibre général dynamique stochastique (de l'anglais Dynamic Stochastic General Equilibrium, DSGE) et les modèles Vecteurs Autorégressifs, VAR. Plusieurs études ont examiné les effets des fluctuations du prix de pétrole sur les principaux variables macroéconomiques, mais très peu d'entre elles ont fait spécifiquement le lien entre les effets des fluctuations du prix du pétrole et la l'origine de ces fluctuations. Pourtant, il est largement admis dans les études plus récentes que les augmentations du prix du pétrole peuvent avoir des effets très différents en fonction de la cause sous-jacente de cette augmentation. Ma thèse, structurée en trois chapitres, porte une attention particulière aux sources de fluctuations du prix de pétrole et leurs impacts sur l'activité macroéconomique en général, et en particulier sur l'économie du Canada. Le premier chapitre examine comment les chocs d'offre de pétrole, de demande agrégée, et de demande de précaution de pétrole affectent l'économie du Canada, dans un Modèle d'équilibre Général Dynamique Stochastique estimé. L'estimation est réalisée par la méthode Bayésienne, en utilisant des données trimestrielles canadiennes sur la période 1983Q1 à 2010Q4. Les résultats montrent que les effets dynamiques des fluctuations du prix du pétrole sur les principaux agrégats macro-économiques canadiens varient en fonction de leurs sources. En particulier, une augmentation de 10% du prix réel du pétrole causée par des chocs positifs sur la demande globale étrangère a un effet positif significatif de l'ordre de 0,4% sur le PIB réel du Canada au moment de l'impact et l'effet reste positif sur tous les horizons. En revanche, une augmentation du prix réel du pétrole causée par des chocs négatifs sur l'offre de pétrole ou par des chocs positifs de la demande de pétrole de précaution a un effet négligeable sur le PIB réel du Canada au moment de l'impact, mais provoque une baisse légèrement significative après l'impact. En outre, parmi les chocs pétroliers identifiés, les chocs sur la demande globale étrangère ont été relativement plus important pour expliquer la fluctuation des principaux agrégats macroéconomiques du Canada au cours de la période d'estimation. Le deuxième chapitre utilise un modèle Structurel VAR en Panel pour examiner les liens entre les chocs de demande et d'offre de pétrole et les ajustements de la demande de travail et des salaires dans les industries manufacturières au Canada. Le modèle est estimé sur des données annuelles désagrégées au niveau industriel sur la période de 1975 à 2008. Les principaux résultats suggèrent qu'un choc positif de demande globale a un effet positif sur la demande de travail et les salaires, à court terme et à long terme. Un choc négatif sur l'offre de pétrole a un effet négatif relativement faible au moment de l'impact, mais l'effet devient positif après la première année. En revanche, un choc positif sur la demande précaution de pétrole a un impact négatif à tous les horizons. Les estimations industrie-par-industrie confirment les précédents résultats en panel. En outre, le papier examine comment les effets des différents chocs pétroliers sur la demande travail et les salaires varient en fonction du degré d'exposition commerciale et de l'intensité en énergie dans la production. Il ressort que les industries fortement exposées au commerce international et les industries fortement intensives en énergie sont plus vulnérables aux fluctuations du prix du pétrole causées par des chocs d'offre de pétrole ou des chocs de demande globale. Le dernier chapitre examine les implications en terme de bien-être social de l'introduction des inventaires en pétrole sur le marché mondial à l'aide d'un modèle DSGE de trois pays dont deux pays importateurs de pétrole et un pays exportateur de pétrole. Les gains de bien-être sont mesurés par la variation compensatoire de la consommation sous deux règles de politique monétaire. Les principaux résultats montrent que l'introduction des inventaires en pétrole a des effets négatifs sur le bien-être des consommateurs dans chacun des deux pays importateurs de pétrole, alors qu'il a des effets positifs sur le bien-être des consommateurs dans le pays exportateur de pétrole, quelle que soit la règle de politique monétaire. Par ailleurs, l'inclusion de la dépréciation du taux de change dans les règles de politique monétaire permet de réduire les coûts sociaux pour les pays importateurs de pétrole. Enfin, l'ampleur des effets de bien-être dépend du niveau d'inventaire en pétrole à l'état stationnaire et est principalement expliquée par les chocs sur les inventaires en pétrole.
Resumo:
Les questions abordées dans les deux premiers articles de ma thèse cherchent à comprendre les facteurs économiques qui affectent la structure à terme des taux d'intérêt et la prime de risque. Je construis des modèles non linéaires d'équilibre général en y intégrant des obligations de différentes échéances. Spécifiquement, le premier article a pour objectif de comprendre la relation entre les facteurs macroéconomiques et le niveau de prime de risque dans un cadre Néo-keynésien d'équilibre général avec incertitude. L'incertitude dans le modèle provient de trois sources : les chocs de productivité, les chocs monétaires et les chocs de préférences. Le modèle comporte deux types de rigidités réelles à savoir la formation des habitudes dans les préférences et les coûts d'ajustement du stock de capital. Le modèle est résolu par la méthode des perturbations à l'ordre deux et calibré à l'économie américaine. Puisque la prime de risque est par nature une compensation pour le risque, l'approximation d'ordre deux implique que la prime de risque est une combinaison linéaire des volatilités des trois chocs. Les résultats montrent qu'avec les paramètres calibrés, les chocs réels (productivité et préférences) jouent un rôle plus important dans la détermination du niveau de la prime de risque relativement aux chocs monétaires. Je montre que contrairement aux travaux précédents (dans lesquels le capital de production est fixe), l'effet du paramètre de la formation des habitudes sur la prime de risque dépend du degré des coûts d'ajustement du capital. Lorsque les coûts d'ajustement du capital sont élevés au point que le stock de capital est fixe à l'équilibre, une augmentation du paramètre de formation des habitudes entraine une augmentation de la prime de risque. Par contre, lorsque les agents peuvent librement ajuster le stock de capital sans coûts, l'effet du paramètre de la formation des habitudes sur la prime de risque est négligeable. Ce résultat s'explique par le fait que lorsque le stock de capital peut être ajusté sans coûts, cela ouvre un canal additionnel de lissage de consommation pour les agents. Par conséquent, l'effet de la formation des habitudes sur la prime de risque est amoindri. En outre, les résultats montrent que la façon dont la banque centrale conduit sa politique monétaire a un effet sur la prime de risque. Plus la banque centrale est agressive vis-à-vis de l'inflation, plus la prime de risque diminue et vice versa. Cela est due au fait que lorsque la banque centrale combat l'inflation cela entraine une baisse de la variance de l'inflation. Par suite, la prime de risque due au risque d'inflation diminue. Dans le deuxième article, je fais une extension du premier article en utilisant des préférences récursives de type Epstein -- Zin et en permettant aux volatilités conditionnelles des chocs de varier avec le temps. L'emploi de ce cadre est motivé par deux raisons. D'abord des études récentes (Doh, 2010, Rudebusch and Swanson, 2012) ont montré que ces préférences sont appropriées pour l'analyse du prix des actifs dans les modèles d'équilibre général. Ensuite, l'hétéroscedasticité est une caractéristique courante des données économiques et financières. Cela implique que contrairement au premier article, l'incertitude varie dans le temps. Le cadre dans cet article est donc plus général et plus réaliste que celui du premier article. L'objectif principal de cet article est d'examiner l'impact des chocs de volatilités conditionnelles sur le niveau et la dynamique des taux d'intérêt et de la prime de risque. Puisque la prime de risque est constante a l'approximation d'ordre deux, le modèle est résolu par la méthode des perturbations avec une approximation d'ordre trois. Ainsi on obtient une prime de risque qui varie dans le temps. L'avantage d'introduire des chocs de volatilités conditionnelles est que cela induit des variables d'état supplémentaires qui apportent une contribution additionnelle à la dynamique de la prime de risque. Je montre que l'approximation d'ordre trois implique que les primes de risque ont une représentation de type ARCH-M (Autoregressive Conditional Heteroscedasticty in Mean) comme celui introduit par Engle, Lilien et Robins (1987). La différence est que dans ce modèle les paramètres sont structurels et les volatilités sont des volatilités conditionnelles de chocs économiques et non celles des variables elles-mêmes. J'estime les paramètres du modèle par la méthode des moments simulés (SMM) en utilisant des données de l'économie américaine. Les résultats de l'estimation montrent qu'il y a une évidence de volatilité stochastique dans les trois chocs. De plus, la contribution des volatilités conditionnelles des chocs au niveau et à la dynamique de la prime de risque est significative. En particulier, les effets des volatilités conditionnelles des chocs de productivité et de préférences sont significatifs. La volatilité conditionnelle du choc de productivité contribue positivement aux moyennes et aux écart-types des primes de risque. Ces contributions varient avec la maturité des bonds. La volatilité conditionnelle du choc de préférences quant à elle contribue négativement aux moyennes et positivement aux variances des primes de risque. Quant au choc de volatilité de la politique monétaire, son impact sur les primes de risque est négligeable. Le troisième article (coécrit avec Eric Schaling, Alain Kabundi, révisé et resoumis au journal of Economic Modelling) traite de l'hétérogénéité dans la formation des attentes d'inflation de divers groupes économiques et de leur impact sur la politique monétaire en Afrique du sud. La question principale est d'examiner si différents groupes d'agents économiques forment leurs attentes d'inflation de la même façon et s'ils perçoivent de la même façon la politique monétaire de la banque centrale (South African Reserve Bank). Ainsi on spécifie un modèle de prédiction d'inflation qui nous permet de tester l'arrimage des attentes d'inflation à la bande d'inflation cible (3% - 6%) de la banque centrale. Les données utilisées sont des données d'enquête réalisée par la banque centrale auprès de trois groupes d'agents : les analystes financiers, les firmes et les syndicats. On exploite donc la structure de panel des données pour tester l'hétérogénéité dans les attentes d'inflation et déduire leur perception de la politique monétaire. Les résultats montrent qu'il y a évidence d'hétérogénéité dans la manière dont les différents groupes forment leurs attentes. Les attentes des analystes financiers sont arrimées à la bande d'inflation cible alors que celles des firmes et des syndicats ne sont pas arrimées. En effet, les firmes et les syndicats accordent un poids significatif à l'inflation retardée d'une période et leurs prédictions varient avec l'inflation réalisée (retardée). Ce qui dénote un manque de crédibilité parfaite de la banque centrale au vu de ces agents.
Resumo:
Des évidences expérimentales récentes indiquent que les ARN changent de structures au fil du temps, parfois très rapidement, et que ces changements sont nécessaires à leurs activités biochimiques. La structure de ces ARN est donc dynamique. Ces mêmes évidences notent également que les structures clés impliquées sont prédites par le logiciel de prédiction de structure secondaire MC-Fold. En comparant les prédictions de structures du logiciel MC-Fold, nous avons constaté un lien clair entre les structures presque optimales (en termes de stabilité prédites par ce logiciel) et les variations d’activités biochimiques conséquentes à des changements ponctuels dans la séquence. Nous avons comparé les séquences d’ARN du point de vue de leurs structures dynamiques afin d’investiguer la similarité de leurs fonctions biologiques. Ceci a nécessité une accélération notable du logiciel MC-Fold. L’approche algorithmique est décrite au chapitre 1. Au chapitre 2 nous classons les impacts de légères variations de séquences des microARN sur la fonction naturelle de ceux-ci. Au chapitre 3 nous identifions des fenêtres dans de longs ARN dont les structures dynamiques occupent possiblement des rôles dans les désordres du spectre autistique et dans la polarisation des œufs de certains batraciens (Xenopus spp.).
Resumo:
Occupational stress is becoming a major issue in both corporate and social agenda .In industrialized countries, there have been quite dramatic changes in the conditions at work, during the last decade ,caused by economic, social and technical development. As a consequence, the people today at work are exposed to high quantitative and qualitative demands as well as hard competition caused by global economy. A recent report says that ailments due to work related stress is likely to cost India’s exchequer around 72000 crores between 2009 and 2015. Though India is a fast developing country, it is yet to create facilities to mitigate the adverse effects of work stress, more over only little efforts have been made to assess the work related stress.In the absence of well defined standards to assess the work related stress in India, an attempt is made in this direction to develop the factors for the evaluation of work stress. Accordingly, with the help of existing literature and in consultation with the safety experts, seven factors for the evaluation of work stress is developed. An instrument ( Questionnaire) was developed using these seven factors for the evaluation of work stress .The validity , and unidimensionality of the questionnaire was ensured by confirmatory factor analysis. The reliability of the questionnaire was ensured before administration. While analyzing the relation ship between the variables, it is noted that no relationship exists between them, and hence the above factors are treated as independent factors/ variables for the purpose of research .Initially five profit making manufacturing industries, under public sector in the state of Kerala, were selected for the study. The influence of factors responsible for work stress is analyzed in these industries. These industries were classified in to two types, namely chemical and heavy engineering ,based on the product manufactured and work environment and the analysis is further carried out for these two categories.The variation of work stress with different age , designation and experience of the employees are analyzed by means of one-way ANOVA. Further three different type of modelling of work stress, namely factor modelling, structural equation modelling and multinomial logistic regression modelling was done to analyze the association of factors responsible for work stress. All these models are found equally good in predicting the work stress.The present study indicates that work stress exists among the employees in public sector industries in Kerala. Employees belonging to age group 40-45yrs and experience groups 15-20yrs had relatively higher work demand ,low job control, and low support at work. Low job control was noted among lower designation levels, particularly at the worker level in these industries. Hence the instrument developed using the seven factors namely demand, control, manager support, peer support, relationship, role and change can be effectively used for the evaluation of work stress in industries.