920 resultados para Reactive-scattering Calculations
Resumo:
Using the Physical Vapor Transport method, single crystals of Cd2Re207 have been grown, and crystals of dimensions up to 8x6x2 mm have been achieved. X-ray diffraction from a single crystal of Cd2Re207 has showed the crystal growth in the (111) plane. Powder X-ray diffraction measurements were performed on ^^O and ^^O samples, however no difference was observed. Assigning the space group Fd3m to Cd2Re207 at room temperature and using structure factor analysis, the powder X-ray diffraction pattern of the sample was explained through systematic reflection absences. The temperatiure dependence of the resistivity measurement of ^^O has revealed two structural phase transitions at 120 and 200 K, and the superconducting transition at 1.0 K. Using Factor Group Analysis on three different structiures of Cd2Re207, the number of IR and Raman active phonon modes close to the Brillouin zone centre have been determined and the results have been compared to the temperature-dependence of the Raman shifts of ^^O and ^*0 samples. After scaling (via removing Bose-Einstein and Rayleigh scattering factors from the scattered light) all spectra, each spectrum was fitted with a number of Lorentzian peaks. The temperature-dependence of the FWHM and Raman shift of mode Eg, shows the effects of the two structurjil phase transitions above Tc. The absolute reflectance of Cd2Re207 - '^O single crystals in the far-infrared spectral region (7-700 cm~^) has been measured in the superconducting state (0.5 K), right above the superconducting state (1.5 K), and in the normal state (4.2 K). Thermal reflectance of the sample at 0.5 K and 1.5 K indicates a strong absorption feature close to 10 cm~^ in the superconducting state with a reference temperature of 4.2 K. By means of Kramers-Kronig analysis, the absolute reflectance was used to calculate the optical conductivity and dielectric function. The real part of optical conductivity shows five distinct active phonon modes at 44, 200, 300, 375, and 575 cm~' at all temperatures including a Drude-like behavior at low frequencies. The imaginary part of the calculated dielectric function indicates a mode softening of the mode 44 cm~' below Tc.
Resumo:
Raman scattering in the region 20 to 100 cm -1 for fused quartz, "pyrex" boro-silicate glass, and soft soda-lime silicate glass was investigated. The Raman spectra for the fused quartz and the pyrex glass were obtained at room temperature using the 488 nm exciting line of a Coherent Radiation argon-ion laser at powers up to 550 mW. For the soft soda-lime glass the 514.5 nm exciting line at powers up to 660 mW was used because of a weak fluorescence which masked the Stokes Raman spectrum. In addition it is demonstrated that the low-frequency Raman coupling constant can be described by a model proposed by Martin and Brenig (MB). By fitting the predicted spectra based on the model with a Gaussian, Poisson, and Lorentzian forms of the correlation function, the structural correlation radius (SCR) was determined for each glass. It was found that to achieve the best possible fit· from each of the three correlation functions a value of the SCR between 0.80 and 0.90 nm was required for both quartz and pyrex glass but for the soft soda-lime silicate glass the required value of the SCR. was between 0.50 and 0.60 nm .. Our results support the claim of Malinovsky and Sokolov (1986) that the MB model based on a Poisson correlation function provides a universal fit to the experimental VH (vertical and horizontal polarizations) spectrum for any glass regardless of its chemical composition. The only deficiency of the MB model is its failure to fit the experimental depolarization spectra.
Resumo:
The capability of molecular mechanics for modeling the wide distribution of bond angles and bond lengths characteristic of coordination complexes was investigatecl. This was the preliminary step for future modeling of solvent extraction. Several tin-phosphine oxide COrnI)le:){es were selected as the test groUl) for t.he d,esired range of geometry they eX!libi ted as \-vell as the ligands they cOD.tained r Wllich were c\f interest in connection with solvation. A variety of adjustments were made to Allinger's M:M2 force·-field ill order to inl.prove its performance in the treatment of these systems. A set of u,nique force constants was introduced for' those terms representing the metal ligand bond lengths, bond angles, and, torsion angles. These were significantly smaller than trad.itionallY used. with organic compounds. The ~1orse poteIlt.ial energ'Y function was incorporated for the M-X l')ond lE~ngths and the cosine harmonic potential erlerg-y function was invoked for the MOP bond angle. These functions were found to accomodate the wide distribution of observed values better than the traditional harmonic approximations~ Crystal packing influences on the MOP angle were explored thr"ollgh ttle inclusion of the isolated molecule withil1 a shell cc)ntaini11g tl1e nearest neigl1'bors duri.rlg energy rninimization experiments~ This was found to further improve the fit of the MOP angle.
Resumo:
Molecular mechanics calculations were done on tetrahedral phosphine oxide zinc complexes in simulated water, benzene and hexane phases using the DREIDING II force field in the BIOGRAF molecular modeling program. The SUN workstation computer (SUN_ 4c, with SPARK station 1 processor) was used for the calculations. Experimental structural information used in the parameterization was obtained from the September 1989 version of the Cambridge Structural Database. 2 Steric and solvation energies were calculated for complexes of the type ZnCl2 (RlO)2' The calculations were done with and without inclusion of electrostatic interactions. More reliable simulation results were obtained without inclusion of charges. In the simulated gas phase, the steric energies increase regularly with number of carbons in the alkyl group, whereas they go through a maximum when solvent shells are included in the calculation. Simulated distribution ratios vary with chain length and type of chain branching and the complexes are found to be more favourable for extraction by benzene than by hexane, in accord with experimental data. Also, in line with what would be expected for a favorable extraction, calculations without electrostatics predict that the complexes are better solvated by the organic solvents than by water.
Resumo:
The anharmonic, multi-phonon (MP), and Oebye-Waller factor (OW) contributions to the phonon limited resistivity (;0) of metals derived by Shukla and Muller (1979) by the doubletime temperature dependent Green function method have been numerically evaluated for Na and K in the high temperature limit. The anharmonic contributions arise from the cubic and quartic shift of phonons (CS, QS), and phonon width (W) and the interference term (1). The QS, MP and OW contributions to I' are also derived by the matrix element method and the results are in agreement with those of Shukla and Muller (1979). In the high temperature limit, the contributions to;O from each of the above mentioned terms are of the type BT2 For numerical calculations suitable expressions are derived for the anharmonic contributions to ~ in terms of the third and fourth rank tensors obtained by the Ewald procedure. The numerical calculation of the contributions to;O from the OW, MP term and the QS have been done exactly and from the CS, Wand I terms only approximately in the partial and total Einstein approximations (PEA, TEA), using a first principle approach (Shukla and Taylor (1976)). The results obtained indicate that there is a strong pairwise cancellation between the: OW and MP terms, the QS and CS and the Wand I terms. The sum total of these contributions to;O for Na and K amounts to 4 to 11% and 2 to 7%, respectively, in the PEA while in the TEA they amount to 3 to 7% and 1 to 4%, respectively, in the temperature range.
Resumo:
The algebraic expressions for the anharmonic contributions to the Debye-Waller factor up to 0(A ) and 0 L% ) £ where ^ is the scattering wave-vector] have been derived in a form suitable for cubic metals with small ion cores where the interatomic potential extends to many neighbours. This has been achieved in terms of various wave-vector dependent tensors, following the work of Shukla and Taylor (1974) on the cubic anharmonic Helmholtz free energy. The contribution to the various wave-vector dependent tensors from the coulomb and the electron-ion terms in the interatomic metallic potential has been obtained by the Ewald procedure. All the restricted multiple whole B r i l l o u i n zone (B.Z.) sums are reduced to single whole B.Z. sums by using the plane wave representation of the delta function. These single whole B.Z. sums are further reduced to the •%?? portion of the B.Z. following Shukla and Wilk (1974) and Shukla and Taylor (1974). Numerical calculations have been performed for sodium where the Born-Mayer term in the interatomic potential has been neglected because i t is small £ Vosko (1964)3 • *n o^er to compare our calculated results with the experimental results of Dawton (1937), we have also calculated the r a t io of the intensities at different temperatures for the lowest five reflections (110), (200), (220), (310) and (400) . Our calculated quasi-harmonic results agree reasonably well with the experimental results at temperatures (T) of the order of the Debye temperature ( 0 ). For T » © ^ 9 our calculated anharmonic results are found to be in good agreement with the experimental results.The anomalous terms in the Debye-Waller factor are found not to be negligible for certain reflections even for T ^ ©^ . At temperature T yy Op 9 where the temperature is of the order of the melting temperature (Xm) » "the anomalous terms are found to be important almost for all the f i ve reflections.
Resumo:
The atomic mean square displacement (MSD) and the phonon dispersion curves (PDC's) of a number of face-centred cubic (fcc) and body-centred cubic (bcc) materials have been calclllated from the quasiharmonic (QH) theory, the lowest order (A2 ) perturbation theory (PT) and a recently proposed Green's function (GF) method by Shukla and Hiibschle. The latter method includes certain anharmonic effects to all orders of anharmonicity. In order to determine the effect of the range of the interatomic interaction upon the anharmonic contributions to the MSD we have carried out our calculations for a Lennard-Jones (L-J) solid in the nearest-neighbour (NN) and next-nearest neighbour (NNN) approximations. These results can be presented in dimensionless units but if the NN and NNN results are to be compared with each other they must be converted to that of a real solid. When this is done for Xe, the QH MSD for the NN and NNN approximations are found to differ from each other by about 2%. For the A2 and GF results this difference amounts to 8% and 7% respectively. For the NN case we have also compared our PT results, which have been calculated exactly, with PT results calculated using a frequency-shift approximation. We conclude that this frequency-shift approximation is a poor approximation. We have calculated the MSD of five alkali metals, five bcc transition metals and seven fcc transition metals. The model potentials we have used include the Morse, modified Morse, and Rydberg potentials. In general the results obtained from the Green's function method are in the best agreement with experiment. However, this improvement is mostly qualitative and the values of MSD calculated from the Green's function method are not in much better agreement with the experimental data than those calculated from the QH theory. We have calculated the phonon dispersion curves (PDC's) of Na and Cu, using the 4 parameter modified Morse potential. In the case of Na, our results for the PDC's are in poor agreement with experiment. In the case of eu, the agreement between the tlleory and experiment is much better and in addition the results for the PDC's calclliated from the GF method are in better agreement with experiment that those obtained from the QH theory.
Resumo:
The one-electron reduced local energy function, t ~ , is introduced and has the property < tL)=(~>. It is suggested that the accuracy of SL reflects the local accuracy of an approximate wavefunction. We establish that <~~>~ <~2,> and present a bound formula, E~ , which is such that where Ew is Weinstein's lower bound formula to the ground state. The nature of the bound is not guaranteed but for sufficiently accurate wavefunctions it will yield a lower bound. ,-+ 1'S I I Applications to X LW Hz. and ne are presented.
Resumo:
I investigated factors of psychopathy (fearless dominance, self-centered impulsivity) and hormones (testosterone, cortisol, estradiol) in predicting costly and non-costly reactive aggression. I hypothesized that whereas self-centred impulsivity (SCI) would promote costly aggression, fearless dominance (FD) would promote non-costly aggression. Costly aggression was measured using the Point Subtraction Aggression Paradigm and noncostly aggression was measured using one-shot dictator games. In women (n = 97; M age = 19.86 years), greater SCI and lower baseline estradiol predicted greater costly aggression; also, greater FD predicted greater non-costly aggression, particularly among women with lower SCI. In men (n = 104; M age = 20.15 years), psychopathy and endocrine function did not predict costly aggression; however, greater FD and greater increases in testosterone were associated with greater non-costly aggression. Thus, there are sex-specific links between psychopathic personality traits, hormones, and aggressive behaviour, and psychopathic traits and endocrine function predict aggressive behaviour independently of each other.
Resumo:
Resveratrol, a polyphenol found naturally in red wines, has attracted great interest in both the scientific community and the general public for its reported ability to protect against many of the diseases facing Western society today. While the purported health effects of resveratrol are well characterized, details of the cellular mechanisms that give rise to these observations are unclear. Here, the mitochondrial antioxidant enzyme Mn superoxide dismutase (MnSOD) was identified as a proximal target of resveratrol in vitro and in vivo. MnSOD protein and activity levels increase significantly in cultured cells treated with resveratrol, and in the brain tissue of mice given resveratrol in a high fat diet. Preventing the increase in MnSOD levels eliminates two of resveratrol’s more interesting effects in the context of human health: inhibition of proliferative cell growth and cytoprotection. Thus, the induction of MnSOD is a critical step in the molecular mechanism of resveratrol. Mitochondrial morphology is a malleable property that is capable of impeding cell cycle progression and conferring resistance against stress induced cell death. Using confocal microscopy and a novel ‘cell free’ fusion assay it was determined that concurrent with changes in MnSOD protein levels, resveratrol treatment leads to a more fused mitochondrial reticulum. This observation may be important to resveratrol’s ability to slow proliferative cell growth and confer cytoprotection. Resveratrol's biological activities, including the ability to increase MnSOD levels, are strikingly similar to what is observed with estrogen treatment. Resveratrol fails to increase MnSOD levels, slow proliferative cell growth and confer cytoprotection in the presence of an estrogen receptor antagonist. Resveratrol's effects can be replicated with the specific estrogen receptor beta agonist diarylpropionitrile, and are absent in myoblasts lacking estrogen receptor beta. Four compounds that are structurally similar to resveratrol and seven phytoestrogens predicted to bind to estrogen receptor beta were screened for their effects on MnSOD, proliferative growth rates and stress resistance in cultured mammalian cells. Several of these compounds were able to mimic the effects of resveratrol on MnSOD levels, proliferative cell growth and stress resistance in vitro. Thus, I hypothesize that resveratrol interacts with estrogen receptor beta to induce the upregulation of MnSOD, which in turn affects cell cycle progression and stress resistance. These results have important implications for the understanding of RES’s biological activities and potential applications to human health.
Resumo:
Calculations regarding S.D. Woodruff’s property on Ontario Street. 1 page of rough penciled calculations, n.d.
Resumo:
Calculations regarding quantities needed for cutting and ditching (1 page, handwritten), March 19, 1884.
Resumo:
Page of scribbled notes and calculations, 1855.
Resumo:
Sketch of the bridge over Hurst’s Point and calculations about the bridge over the pond at Allenburgh, n.d.
Resumo:
Calculations regarding the bridge crossing Chippawa (1 page, penciled calculations), n.d.