930 resultados para Rare-earth


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis presents experimental studies of rare earth (RE) metal induced structures on Si(100) surfaces. Two divalent RE metal adsorbates, Eu and Yb, are investigated on nominally flat Si(100) and on vicinal, stepped Si(100) substrates. Several experimental methods have been applied, including scanning tunneling microscopy/spectroscopy (STM/STS), low energy electron diffraction (LEED), synchrotron radiation photoelectron spectroscopy (SR-PES), Auger electron spectroscopy (AES), thermal desorption spectroscopy (TDS), and work function change measurements (Δφ). Two stages can be distinguished in the initial growth of the RE/Si interface: the formation of a two-dimensional (2D) adsorbed layer at submonolayer coverage and the growth of a three-dimensional (3D) silicide phase at higher coverage. The 2D phase is studied for both adsorbates in order to discover whether they produce common reconstructions or reconstructions common to the other RE metals. For studies of the 3D phase Yb is chosen due to its ability to crystallize in a hexagonal AlB2 type lattice, which is the structure of RE silicide nanowires, therefore allowing for the possibility of the growth of one-dimensional (1D) wires. It is found that despite their similar electronic configuration, Eu and Yb do not form similar 2D reconstructions on Si(100). Instead, a wealth of 2D structures is observed and atomic models are proposed for the 2×3-type reconstructions. In addition, adsorbate induced modifications on surface morphology and orientational symmetry are observed. The formation of the Yb silicide phase follows the Stranski-Krastanov growth mode. Nanowires with the hexagonal lattice are observed on the flat Si(100) substrate, and moreover, an unexpectedly large variety of growth directions are revealed. On the vicinal substrate the growth of the silicide phase as 3D islands and wires depends drastically on the growth conditions. The conditions under which wires with high aspect ratio and single orientation parallel to the step edges can be formed are demonstrated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the last decade, many method has been developed to obtain oxysufides. However, theses materials were obtained by reaction involved gaseous toxics, CO, CS2, H2S and S. In the present work, the synthesis of lanthanum oxysufides actived by europium (III) through an alternative method has been made. This method involve the rare earth sulfate reduction under an atmosphere of argon contained 10% hydrogen using the thermogravimetric technique. The results showed the formation of the phase TR2O2S (TR = La and Eu) at temperatures which depend upon the heating rate, respectively 650 - 830ºC at 5ºC min-1 and 680 - 800ºC at 10ºC min-1. The oxysufides obtained are characterized by infrared spectroscopy. The method developed is more economic than the usual industrial methods and the environmental problems during the synthesis are also better controled.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this article we review some of the basic aspects of rare earth spectroscopy applied to vitreous materials. The characteristics of the intra-atomic free ion and ligand field interactions, as well as the formalisms of the forced electric dipole and dynamic coupling mechanisms of 4f-4f intensities, are outlined. The contribution of the later mechanism to the 4f-4f intensities is critically discussed, a point that has been commonly overlooked in the literature of rare earth doped glasses. The observed correlation between the empirical intensity parameter W2 and the covalence of the ion first coordination shell is discussed accordingly to the theoretical predictions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sand samples collected from two sampling sites on Guarapari and Iriri beaches, state of Espírito Santo, Brazil, were studied in an attempt to better describe their chemical and mineralogical compositions and radioactive behaviors. The sands were found to contain about 6 (Guarapari) and 2 dag kg-1 (Iriri) of rare earth and thorium that, if allocated to the monazite-(Ce) structure, lead to the averaged formulae Ce3+0,494Gd3+0,012La3+0,209Nd3+0,177Pr3+0,040Sm3+0,024Th4+0,033 (PO4) and Ce3+0,474La3+0,227Nd3+0,190Pr3+0,044Sm3+0,032Th4+0,024 (PO4). From Mössbauer spectroscopy data, the magnetic fractions of these sands were found to contain stoichiometric hematite (47.4 dag kg-1, from Guarapari, and 25.1 dag kg-1, from Iriri) and magnetite (44.1 and 58.8 dag kg-1). The specific alpha and beta radiation activities were also measured for both samples.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pb/Ti, Sn and Mg-based nanocomposite materials were prepared by the high-energy mechanical milling of commercial powders. The surface of these ceramic compounds was strongly influenced by the doping, diameter of the milling spheres and time of the mechanical milling (amorphization process). Such milling leads to the formation of nanocrystalline materials. The mechanical processing parameters of these compounds were investigated through Brunauer, Emmett and Teller isotherms, wide angle X-ray diffraction, transmission electron microscopy and CO2 adsorption.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Rare earth ion doped solid state materials are the most important active media of near-infrared and visible lasers and other photonic devices. In these ions, the occurrence of Excited State Absorptions (ESA), from long lived electronic levels, is commonplace. Since ESA can deeply affect the efficiencies of the rare earth emissions, evaluation of these transitions cross sections is of greatest importance in predicting the potential applications of a given material. In this paper a detailed description of the pump-probe technique for ESA measurements is presented, with a review of several examples of applications in Nd3+, Tm3+ and Er3+ doped materials.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

[RE(czb)3(H2O)2] complexes (where RE = Eu3+, Tb3+, Gd3+; and czb = 4-(9H-carbazol-9-yl)benzoato) have been synthesized and characterized. The Gd3+ complex was used to determine the triplet state energy of the czb ligand. Photoluminescence measurements of the complexes have been carried out under UV excitation. The Tb3+ complex exhibited a strong green luminescence indicating an efficient antenna effect, whereas the Eu3+ complex showed low red luminescence and the Gd3+ complex a blue-green luminescence from the ligand. The luminescence lifetimes and quantum yields have also been measured for the evaluation of the spectroscopic behavior of the complexes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work outlines the historic development of the concept and main theories of energy transfer, as well as the principal experiments carried out to confirm or refute the proposed theories. Energy transfer in coordination compounds is also discussed with a focus on rare earth systems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hydrated compounds prepared in aqueous solution by reaction between amidosulfonic acid [H3NSO3] and suspensions of rare earth hydroxycarbonates [Ln2(OH)x(CO3)y.zH2O] were characterized by elemental analysis (% Ln, % N and % H), infrared spectroscopy (FTIR) and thermogravimetry (TG). The compounds presented the stoichiometry Ln(NH2SO3)3.xH2O (where x = 1, 5, 2.0 or 3.0). The IR spectra showed absorptions characteristic of H2O molecules and NH2SO3 groups. Degree of hydration, thermal decomposition steps and formation of stable intermediates of the type [Ln2(SO4)3] and (Ln2O2SO4), besides formation of their oxides, was determined by thermogravimetry.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The marine environment is certainly one of the most complex systems to study, not only because of the challenges posed by the nature of the waters, but especially due to the interactions of physical, chemical and biological processes that control the cycles of the elements. Together with analytical chemists, oceanographers have been making a great effort in the advancement of knowledge of the distribution patterns of trace elements and processes that determine their biogeochemical cycles and influences on the climate of the planet. The international academic community is now in prime position to perform the first study on a global scale for observation of trace elements and their isotopes in the marine environment (GEOTRACES) and to evaluate the effects of major global changes associated with the influences of megacities distributed around the globe. This action can only be performed due to the development of highly sensitive detection methods and the use of clean sampling and handling techniques, together with a joint international program working toward the clear objective of expanding the frontiers of the biogeochemistry of the oceans and related topics, including climate change issues and ocean acidification associated with alterations in the carbon cycle. It is expected that the oceanographic data produced this coming decade will allow a better understanding of biogeochemical cycles, and especially the assessment of changes in trace elements and contaminants in the oceans due to anthropogenic influences, as well as its effects on ecosystems and climate. Computational models are to be constructed to simulate the conditions and processes of the modern oceans and to allow predictions. The environmental changes arising from human activity since the 18th century (also called the Anthropocene) have made the Earth System even more complex. Anthropogenic activities have altered both terrestrial and marine ecosystems, and the legacy of these impacts in the oceans include: a) pollution of the marine environment by solid waste, including plastics; b) pollution by chemical and medical (including those for veterinary use) substances such as hormones, antibiotics, legal and illegal drugs, leading to possible endocrine disruption of marine organisms; and c) ocean acidification, the collateral effect of anthropogenic emissions of CO2 into the atmosphere, irreversible in the human life time scale. Unfortunately, the anthropogenic alteration of the hydrosphere due to inputs of plastics, metal, hydrocarbons, contaminants of emerging concern and even with formerly "exotic" trace elements, such us rare earth elements is likely to accelerate in the near future. These emerging contaminants would likely soon present difficulties for studies in pristine environments. All this knowledge brings with it a great responsibility: helping to envisage viable adaptation and mitigation solutions to the problems identified. The greatest challenge faced by Brazil is currently to create a framework project to develop education, science and technology applied to oceanography and related areas. This framework would strengthen the present working groups and enhance capacity building, allowing a broader Brazilian participation in joint international actions and scientific programs. Recently, the establishment of the National Institutes of Science and Technology (INCTs) for marine science, and the creation of the National Institute of Oceanographic and Hydrological Research represent an exemplary start. However, the participation of the Brazilian academic community in the latest assaults on the frontier of chemical oceanography is extremely limited, largely due to: i. absence of physical infrastructure for the preparation and processing of field samples at ultra-trace level; ii. limited access to oceanographic cruises, due to the small number of Brazilian vessels and/or absence of "clean" laboratories on board; iii. restricted international cooperation; iv. limited analytical capacity of Brazilian institutions for the analysis of trace elements in seawater; v. high cost of ultrapure reagents associated with processing a large number of samples, and vi. lack of qualified technical staff. Advances in knowledge, analytic capabilities and the increasing availability of analytical resources available today offer favorable conditions for chemical oceanography to grow. The Brazilian academic community is maturing and willing to play a role in strengthening the marine science research programs by connecting them with educational and technological initiatives in order to preserve the oceans and to promote the development of society.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A hydrometallurgical method for the recovery of rare earth metals, cobalt, nickel, iron, and manganese from the negative electrodes of spent Ni - MH mobile phone batteries was developed. The rare earth compounds were obtained by chemical precipitation at pH 1.5, with sodium cerium sulfate (NaCe(SO4)2.H2O) and lanthanum sulfate (La2(SO4)3.H2O) as the major recovered components. Iron was recovered as Fe(OH)3 and FeO. Manganese was obtained as Mn3O4.The recovered Ni(OH)2 and Co(OH)2 were subsequently used to synthesize LiCoO2, LiNiO2 and CoO, for use as cathodes in ion-Li batteries. The anodes and recycled materials were characterized by analytical techniques.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This contribution introduces a brief discussion about the properties and applications of the rare earth elements, with a focus on their current status in Brazil. The general chemical properties, main applications and historical background of the chemistry of these elements are presented, and special attention is devoted to the development of the exploitation and both academic and industrial activities involving rare earths in Brazil. A discussion of the current world scenario ensues and some perspectives regarding the prospection, market and government policy concerning the rare earth elements in Brazil are given.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Persistent luminescence materials can store energy from solar radiation or artificial lighting and release it over a period of several hours without a continuous excitation source. These materials are widely used to improve human safety in emergency and traffic signalization. They can also be utilized in novel applications including solar cells, medical diagnostics, radiation detectors and structural damage sensors. The development of these materials is currently based on methods based on trial and error. The tailoring of new materials is also hindered by the lack of knowledge on the role of their intrinsic and extrinsic lattice defects in the appropriate mechanisms. The goal of this work was to clarify the persistent luminescence mechanisms by combining ab initio density functional theory (DFT) calculations with selected experimental methods. The DFT approach enables a full control of both the nature of the defects and their locations in the host lattice. The materials studied in the present work, the distrontium magnesium disilicate (Sr2MgSi2O7) and strontium aluminate (SrAl2O4) are among the most efficient persistent luminescence hosts when doped with divalent europium Eu2+ and co-doped with trivalent rare earth ions R3+ (R: Y, La-Nd, Sm, Gd-Lu). The polycrystalline materials were prepared with the solid state method and their structural and phase purity was confirmed by X-ray powder diffraction. Their local crystal structure was studied by high-resolution transmission electron microscopy. The crystal and electronic structure of the nondoped as well as Eu2+, R2+/3+ and other defect containing materials were studied using DFT calculations. The experimental trap depths were obtained using thermoluminescence (TL) spectroscopy. The emission and excitation of Sr2MgSi2O7:Eu2+,Dy3+ were also studied. Significant modifications in the local crystal structure due to the Eu2+ ion and lattice defects were found by the experimental and DFT methods. The charge compensation effects induced by the R3+ co-doping further increased the number of defects and distortions in the host lattice. As for the electronic structure of Sr2MgSi2O7 and SrAl2O4, the experimental band gap energy of the host materials was well reproduced by the calculations. The DFT calculated Eu2+ and R2+/3+ 4fn as well as 4fn-15d1 ground states in the Sr2MgSi2O7 band structure provide an independent verification for an empirical model which is constructed using rather sparse experimental data for the R3+ and especially the R2+ ions. The intrinsic and defect induced electron traps were found to act together as energy storage sites contributing to the materials’ efficient persistent luminescence. The calculated trap energy range agreed with the trap structure of Sr2MgSi2O7 obtained using TL measurements. More experimental studies should be carried out for SrAl2O4 to compare with the DFT calculations. The calculated and experimental results show that the electron traps created by both the rare earth ions and vacancies are modified due to the defect aggregation and charge compensation effects. The relationships between this modification and the energy storage properties of the solid state materials are discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Taloudellisesti tärkeiden metallien varannot ja tuotanto eivät ole jakautuneet tasaisesti. Maantieteelliset alueet, joilla ei ole omia varantoja ovat riippuvaisia muualta tuoduista raaka-aineista. Euroopan komissio ja USA:n energiaministeriö ovat luokitelleet tietyt metallit kriittisiksi niiden taloudellisen merkittävyyden ja saatavuuteen liittyvien epävarmuustekijöiden johdosta. Tällaisten metallien saatavuutta voitaisiin mahdollisesti parantaa lisäämällä niiden talteenottoa jätteistä. Tutkimuksessa kartoitettiin Euroopan komission kriittiseksi luokittelemien metallien pitoisuuksia eräissä jätevirroissa. Kartoitetut jätteet olivat teollisissa poltto-prosesseissa syntyneitä polttojätteitä, prosessiteollisuuden jätesakkoja ja sähkö- ja elektroniikkajätteitä. Kartoituksen perusteella valittiin lupaavimmat jätteet ja suoritettiin niille talteenottokokeita. Talteenottokokeita suoritettiin kolmelle jätteelle. Yhdestä jätesakasta liuotettiin indiumia rikki- ja suolahapoilla. Kahden eri polttojätteen seoksesta liuotettiin galliumia rikkihapolla. Käytettyjen loisteputkien käsittelyprosessista peräisin olleesta sakasta liuotettiin maametalleja rikki- ja suolahapoilla sekä rikki- ja typpihapon seoksella. Indium liukeni heikosti (korkeintaan 25 %) huoneenlämmössä rikkihapolla. Suolahapolla se liukeni paremmin (68 %). Polttojätteen liuotuskokeissa galliumin talteenottoasteen todettiin riippuvan käytetyn liuottimen määrästä. Loisteputkijätesakasta liukeni yttriumia ja europiumia kaikilla käytetyillä happoliuoksilla noin 70–100 %. Käytetyillä happokonsentraatioilla ei havaittu suuria eroja yttriumin ja europiumin liukoisuuksissa. Näitä metalleja voitaisiin mahdollisesti ottaa talteen tämän tyyppisestä sakasta liuottamalla ne happoliuoksella ja saostamalla oksalaattina. Tarvittaessa liuokset voitaisiin puhdistaa tai metallit erottaa toisistaan neste–nesteuutolla, joka on tärkein maametallien tuotantoon käytetty hydrometallurginen menetelmä.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The concern related to environment is growing. Due to this, it is needed to determine chemical elements in a large range of concentration. The neutron activation technique (NAA) determines the elemental composition by the measurement of artificial radioactivity in a sample that was submitted to a neutron flux. NAA is a sensitive and accurate technique with low detection limits. An example of application of NAA was the measurement of concentrations of rare earth elements (REE) in waste samples of phosphogypsum (PG) and cerrado soil samples (clayey and sandy soils). Additionally, a soil reference material of the International Atomic Energy Agency (IAEA) was also analyzed. The REE concentration in PG samples was two times higher than those found in national fertilizers, (total of 4,000 mg kg-1 ), 154 times greater than the values found in the sandy soil (26 mg kg-1 ) and 14 times greater than the in clayey soil (280 mg kg-1 ). The experimental results for the reference material were inside the uncertainty of the certified values pointing out the accuracy of the method (95%). The determination of La, Ce, Pr, Nd, Pm, Sm, Eu, Tb, Dy, Ho, Er, Tm, Yb and Lu in the samples and reference material confirmed the versatility of the technique on REE determination in soil and phosphogypsum samples that are matrices for agricultural interest.