990 resultados para Random solutions
Resumo:
We report a novel phase behavior in aqueous solutions of simple organic solutes near their liquid/liquid critical points, where a solid-like third phase appears at the liquid/liquid interface. The phenomenon has been found in three different laboratories. It appears in many aqueous systems of organic solutes and becomes enhanced upon the addition of salt to these solutions.
Resumo:
In this paper we develop an analytical heat transfer model, which is capable of analyzing cyclic melting and solidification processes of a phase change material used in the context of electronics cooling systems. The model is essentially based on conduction heat transfer, with treatments for convection and radiation embedded inside. The whole solution domain is first divided into two main sub-domains, namely, the melting sub-domain and the solidification sub-domain. Each sub-domain is then analyzed for a number of temporal regimes. Accordingly, analytical solutions for temperature distribution within each subdomain are formulated either using a semi-infinity consideration, or employing a method of quasi-steady state, depending on the applicability. The solution modules are subsequently united, leading to a closed-form solution for the entire problem. The analytical solutions are then compared with experimental and numerical solutions for a benchmark problem quoted in the literature, and excellent agreements can be observed.
Resumo:
‘Best’ solutions for the shock-structure problem are obtained by solving the Boltzmann equation for a rigid sphere gas by applying minimum error criteria on the Mott-Smith ansatz. The use of two such criteria minimizing respectively the local and total errors, as well as independent computations of the remaining error, establish the high accuracy of the solutions, although it is shown that the Mott-Smith distribution is not an exact solution of the Boltzmann equation even at infinite Mach number. The minimum local error method is found to be particularly simple and efficient. Adopting the present solutions as the standard of comparison, it is found that the widely used v2x-moment solutions can be as much as a third in error, but that results based on Rosen's method provide good approximations. Finally, it is shown that if the Maxwell mean free path on the hot side of the shock is chosen as the scaling length, the value of the density-slope shock thickness is relatively insensitive to the intermolecular potential. A comparison is made on this basis of present results with experiment, and very satisfactory quantitative agreement is obtained.
Resumo:
We study the statistical properties of spatially averaged global injected power fluctuations for Taylor-Couette flow of a wormlike micellar gel formed by surfactant cetyltrimethylammonium tosylate. At sufficiently high Weissenberg numbers the shear rate, and hence the injected power p(t), at a constant applied stress shows large irregular fluctuations in time. The nature of the probability distribution function (PDF) of p(t) and the power-law decay of its power spectrum are very similar to that observed in recent studies of elastic turbulence for polymer solutions. Remarkably, these non-Gaussian PDFs can be well described by a universal, large deviation functional form given by the generalized Gumbel distribution observed in the context of spatially averaged global measures in diverse classes of highly correlated systems. We show by in situ rheology and polarized light scattering experiments that in the elastic turbulent regime the flow is spatially smooth but random in time, in agreement with a recent hypothesis for elastic turbulence.
Resumo:
Given two independent Poisson point processes ©(1);©(2) in Rd, the AB Poisson Boolean model is the graph with points of ©(1) as vertices and with edges between any pair of points for which the intersection of balls of radius 2r centred at these points contains at least one point of ©(2). This is a generalization of the AB percolation model on discrete lattices. We show the existence of percolation for all d ¸ 2 and derive bounds for a critical intensity. We also provide a characterization for this critical intensity when d = 2. To study the connectivity problem, we consider independent Poisson point processes of intensities n and cn in the unit cube. The AB random geometric graph is de¯ned as above but with balls of radius r. We derive a weak law result for the largest nearest neighbour distance and almost sure asymptotic bounds for the connectivity threshold.
Resumo:
For the successful performance of a granular filter medium, existing design guidelines, which are based on the particle size distribution (PSD) characteristics of the base soil and filter medium, require two contradictory conditions to be satisfied, viz., soil retention and permeability. In spite of the wider applicability of these guidelines, it is well recognized that (i) they are applicable to a particular range of soils tested in the laboratory, (ii) the design procedures do not include performance-based selection criteria, and (iii) there are no means to establish the sensitivity of the important variables influencing performance. In the present work, analytical solutions are developed to obtain a factor of safety with respect to soil-retention and permeability criteria for a base soil - filter medium system subjected to a soil boiling condition. The proposed analytical solutions take into consideration relevant geotechnical properties such as void ratio, permeability, dry unit weight, effective friction angle, shape and size of soil particles, seepage discharge, and existing hydraulic gradient. The solution is validated through example applications and experimental results, and it is established that it can be used successfully in the selection as well as design of granular filters and can be applied to all types of base soils.
Resumo:
Uncertainties in complex dynamic systems play an important role in the prediction of a dynamic response in the mid- and high-frequency ranges. For distributed parameter systems, parametric uncertainties can be represented by random fields leading to stochastic partial differential equations. Over the past two decades, the spectral stochastic finite-element method has been developed to discretize the random fields and solve such problems. On the other hand, for deterministic distributed parameter linear dynamic systems, the spectral finite-element method has been developed to efficiently solve the problem in the frequency domain. In spite of the fact that both approaches use spectral decomposition (one for the random fields and the other for the dynamic displacement fields), very little overlap between them has been reported in literature. In this paper, these two spectral techniques are unified with the aim that the unified approach would outperform any of the spectral methods considered on their own. An exponential autocorrelation function for the random fields, a frequency-dependent stochastic element stiffness, and mass matrices are derived for the axial and bending vibration of rods. Closed-form exact expressions are derived by using the Karhunen-Loève expansion. Numerical examples are given to illustrate the unified spectral approach.
Resumo:
The optical rotatory features of the beta-structure of the polypeptides in non-aqueous solutions and films cast from these solutions have been investigated. The beta-structure of poly-S-benzyl-L-cysteine, poly-S-carbobenzoxy-L-cysteine and poly-S-benzyl-L-cysteine, poly-S-carbobenzoxy-L-cysteine and poly-O-carbo-bands of their films. The optical rotatory dispersion (ORD) and circular dichroism (CD) spectra of these polypeptides are found to be very similar in both film and solution. In solvents promoting the beta-structure, the polypeptides are characterized by CD troughs in the n-pi* transition region of the peptide chromophore. The ORD spectra are found to be positive in sign throughout the visible and accessible ultraviolet regions and are interpreted in terms of the possible existence of a relatively much larger positive pi-pi* CD bands as compared with the negative n-pi* band. The rotatory data obtained in the non-aqueous solution are compared with those obtained for other poly peptides in aqueous solutions, with respect to the type and extent of beta-structure present.
Resumo:
The specific side-chain orientations of the phenyl group in the polypeptides poly-S-benzyl-L-cysteine, poly-S-carbobenzoxy-L-cysteine and poly-O-carbobenzoxy-L-serine in the beta-structure have been studied by spectral measurements in solutions. All the three polypeptides exhibit aromatic CD bands, indicating the asymmetric placement of the side-chain phenyl rings when the polypeptide backbone takes up the antiparallel beta-structure. Supporting evidence for this is derived from n.m.r. spectra of the polypeptides, which show upfield shift of the phenyl protons due to the stacking of the aromatic rings. Molecular model building studies reveal the stacking of alternate phenyl groups along the polypeptide chain.
Resumo:
We investigate the spatial search problem on the two-dimensional square lattice, using the Dirac evolution operator discretized according to the staggered lattice fermion formalism. d=2 is the critical dimension for the spatial search problem, where infrared divergence of the evolution operator leads to logarithmic factors in the scaling behavior. As a result, the construction used in our accompanying article [ A. Patel and M. A. Rahaman Phys. Rev. A 82 032330 (2010)] provides an O(√NlnN) algorithm, which is not optimal. The scaling behavior can be improved to O(√NlnN) by cleverly controlling the massless Dirac evolution operator by an ancilla qubit, as proposed by Tulsi Phys. Rev. A 78 012310 (2008). We reinterpret the ancilla control as introduction of an effective mass at the marked vertex, and optimize the proportionality constants of the scaling behavior of the algorithm by numerically tuning the parameters.
Resumo:
We consider a fluid queue in discrete time with random service rate. Such a queue has been used in several recent studies on wireless networks where the packets can be arbitrarily fragmented. We provide conditions on finiteness of moments of stationary delay, its Laplace-Stieltjes transform and various approximations under heavy traffic. Results are extended to the case where the wireless link can transmit in only a few slots during a frame.
Resumo:
Closed form solutions for equilibrium and flexibility matrices of the Mindlin-Reissner theory based eight-node rectangular plate bending element (MRP8) using integrated Force Method (IFM) are presented in this paper. Though these closed form solutions of equilibrium and flexibility matrices are applicable to plate bending problems with square/rectangular boundaries, they reduce the computational time significantly and give more exact solutions. Presented closed form solutions are validated by solving large number of standard square/rectangular plate bending benchmark problems for deflections and moments and the results are compared with those of similar displacement-based eight-node quadrilateral plate bending elements available in the literature. The results are also compared with the exact solutions.