942 resultados para Random matrix
Resumo:
In this study we focused our attention on the behavior of four nuclear matrix proteins during the various stages of apoptosis in the HL-60 cell line exposed to the DNA topoisomerase I inhibitor, camptothecin. We have examined the following antigens by immunocytochemical techniques: (i) the 180-kDa nucleolar isoform of DNA topoisomerase II; (ii) a 126-kDa polypeptide of nuclear bodies; (iii) a 125-kDa protein; and (iv) a 160-kDa polypeptide which are known to be components of the matrix inner network. Indirect immunofluorescence experiments were performed to follow these nuclear matrix antigens during apoptosis. Moreover, the ultrastructural localization of both 125- and 160-kDa proteins was investigated by electron microscope immunocytochemistry with gold-conjugated secondary antibodies. While the antibody to the nucleolar isoform of DNA topoisomerase II gave a fluorescent pattern that was well-maintained until the late phases of apoptosis, the other three nuclear antigens showed marked modifications in their distribution. A common feature, particularly evident for 125- and 160-kDa proteins, was their absence from cap-shaped chromatin marginations, whereas they were present in the areas of remaining decondensed chromatin. The 126-kDa polypeptide concentrated progressively in an irregular mass at the opposite side of the crescentic caps and then broke up in fine spots. The 125- and 160-kDa proteins localized in the nucleolus and precisely within certain granules which are known to appear in the nucleolar area after camptothecin administration. These results show that, in addition to the well-known chromatin changes, nuclear organization undergoes other rearrangements during the apoptotic process.
Resumo:
An exhaustive classification of matrix effects occurring when a sample preparation is performed prior to liquid-chromatography coupled to mass spectrometry (LC-MS) analyses was proposed. A total of eight different situations were identified allowing the recognition of the matrix effect typology via the calculation of four recovery values. A set of 198 compounds was used to evaluate matrix effects after solid phase extraction (SPE) from plasma or urine samples prior to LC-ESI-MS analysis. Matrix effect identification was achieved for all compounds and classified through an organization chart. Only 17% of the tested compounds did not present significant matrix effects.
Resumo:
In this paper we establish the existence and uniqueness of a solution for different types of stochastic differential equation with random initial conditions and random coefficients. The stochastic integral is interpreted as a generalized Stratonovich integral, and the techniques used to derive these results are mainly based on the path properties of the Brownian motion, and the definition of the Stratonovich integral.
Resumo:
We present here a nonbiased probabilistic method that allows us to consistently analyze knottedness of linear random walks with up to several hundred noncorrelated steps. The method consists of analyzing the spectrum of knots formed by multiple closures of the same open walk through random points on a sphere enclosing the walk. Knottedness of individual "frozen" configurations of linear chains is therefore defined by a characteristic spectrum of realizable knots. We show that in the great majority of cases this method clearly defines the dominant knot type of a walk, i.e., the strongest component of the spectrum. In such cases, direct end-to-end closure creates a knot that usually coincides with the knot type that dominates the random closure spectrum. Interestingly, in a very small proportion of linear random walks, the knot type is not clearly defined. Such walks can be considered as residing in a border zone of the configuration space of two or more knot types. We also characterize the scaling behavior of linear random knots.
Resumo:
The present study explores the statistical properties of a randomization test based on the random assignment of the intervention point in a two-phase (AB) single-case design. The focus is on randomization distributions constructed with the values of the test statistic for all possible random assignments and used to obtain p-values. The shape of those distributions is investigated for each specific data division defined by the moment in which the intervention is introduced. Another aim of the study consisted in testing the detection of inexistent effects (i.e., production of false alarms) in autocorrelated data series, in which the assumption of exchangeability between observations may be untenable. In this way, it was possible to compare nominal and empirical Type I error rates in order to obtain evidence on the statistical validity of the randomization test for each individual data division. The results suggest that when either of the two phases has considerably less measurement times, Type I errors may be too probable and, hence, the decision making process to be carried out by applied researchers may be jeopardized.
Resumo:
Limited migration results in kin selective pressure on helping behaviors under a wide range of ecological, demographic and life-history situations. However, such genetically determined altruistic helping can evolve only when migration is not too strong and group size is not too large. Cultural inheritance of helping behaviors may allow altruistic helping to evolve in groups of larger size because cultural transmission has the potential to markedly decrease the variance within groups and augment the variance between groups. Here, we study the co-evolution of culturally inherited altruistic helping behaviors and two alternative cultural transmission rules for such behaviors. We find that conformist transmission, where individuals within groups tend to copy prevalent cultural variants (e.g., beliefs or values), has a strong adverse effect on the evolution of culturally inherited helping traits. This finding is at variance with the commonly held view that conformist transmission is a crucial factor favoring the evolution of altruistic helping in humans. By contrast, we find that under one-to-many transmission, where individuals within groups tend to copy a "leader" (or teacher), altruistic helping can evolve in groups of any size, although the cultural transmission rule itself hitchhikes rather weakly with a selected helping trait. Our results suggest that culturally determined helping behaviors are more likely to be driven by "leaders" than by popularity, but the emergence and stability of the cultural transmission rules themselves should be driven by some extrinsic factors.
Resumo:
Optimal seeding of a nerve conduit with cells is a core problem in tissue engineering of constructing an artificial nerve substitute to gap lesions in the peripheral nerve system. An ideal nerve gap substitute would have to present an equally distributed number of cells that can activate the regrowing axons. This work shows a new in vitro technique of two-step seeding of cells inside a conduit and on layered mats that allows a valuable targeting of the cells and a proven survival in the environment of poly-3-hydroxybutyrate (PHB) conduits. The technique uses two components of diluted fibrin glue Tisseel. Initially, the chosen area on the mat was coated with thrombin followed from the seeding of a fibrinogen-cell compound. Using Sprague Dawley rat cells, we could demonstrate with immunohistochemistry (S100, DAPI) techniques that undifferentiated (uMSC) and Schwann cells (SC) mimicking differentiated mesenchymal stem cells (dMSC) as well as SC can be suspended and targeted significantly better in dissolvable diluted fibrin glue than in growth medium. Analysis showed significantly better values for adherence (p < 0.001) and drop off (p < 0.05) from seeded cells. Using this two-step application allows the seeding of the cells to be more precise and simplifies the handling of cell transplantation.
Resumo:
Matrix sublimation has demonstrated to be a powerful approach for high-resolution matrix-assisted laser desorption ionization (MALDI) imaging of lipids, providing very homogeneous solvent-free deposition. This work presents a comprehensive study aiming to evaluate current and novel matrix candidates for high spatial resolution MALDI imaging mass spectrometry of lipids from tissue section after deposition by sublimation. For this purpose, 12 matrices including 2,5-dihydroxybenzoic acid (DHB), sinapinic acid (SA), α-cyano-4-hydroxycinnamic acid (CHCA), 2,6-dihydroxyacetphenone (DHA), 2',4',6'-trihydroxyacetophenone (THAP), 3-hydroxypicolinic acid (3-HPA), 1,8-bis(dimethylamino)naphthalene (DMAN), 1,8,9-anthracentriol (DIT), 1,5-diaminonapthalene (DAN), p-nitroaniline (NIT), 9-aminoacridine (9-AA), and 2-mercaptobenzothiazole (MBT) were investigated for lipid detection efficiency in both positive and negative ionization modes, matrix interferences, and stability under vacuum. For the most relevant matrices, ion maps of the different lipid species were obtained from tissue sections at high spatial resolution and the detected peaks were characterized by matrix-assisted laser desorption ionization time-of-flight/time-of-flight (MALDI-TOF/TOF) mass spectrometry. First proposed for imaging mass spectrometry (IMS) after sublimation, DAN has demonstrated to be of high efficiency providing rich lipid signatures in both positive and negative polarities with high vacuum stability and sub-20 μm resolution capacity. Ion images from adult mouse brain were generated with a 10 μm scanning resolution. Furthermore, ion images from adult mouse brain and whole-body fish tissue sections were also acquired in both polarity modes from the same tissue section at 100 μm spatial resolution. Sublimation of DAN represents an interesting approach to improve information with respect to currently employed matrices providing a deeper analysis of the lipidome by IMS.
Resumo:
Treball final de carrera basat en el reconeixement de punts clau en imatges mitjançant l'algorisme Random Ferns.
Resumo:
We study the details of electronic transport related to the atomistic structure of silicon quantum dots embedded in a silicon dioxide matrix using ab initio calculations of the density of states. Several structural and composition features of quantum dots (QDs), such as diameter and amorphization level, are studied and correlated with transport under transfer Hamiltonian formalism. The current is strongly dependent on the QD density of states and on the conduction gap, both dependent on the dot diameter. In particular, as size increases, the available states inside the QD increase, while the QD band gap decreases due to relaxation of quantum confinement. Both effects contribute to increasing the current with the dot size. Besides, valence band offset between the band edges of the QD and the silica, and conduction band offset in a minor grade, increases with the QD diameter up to the theoretical value corresponding to planar heterostructures, thus decreasing the tunneling transmission probability and hence the total current. We discuss the influence of these parameters on electron and hole transport, evidencing a correlation between the electron (hole) barrier value and the electron (hole) current, and obtaining a general enhancement of the electron (hole) transport for larger (smaller) QD. Finally, we show that crystalline and amorphous structures exhibit enhanced probability of hole and electron current, respectively.