922 resultados para Random Walks
Resumo:
L’impacchettamento risulta essere importante in molti settori industriali, come il settore minerario, farmaceutico e soprattutto il settore spaziale, in quanto permette di massimizzare il grado di riempimento del propellente solido di un razzo ottenendo prestazioni migliori e notevoli vantaggi economici. Il lavoro di tesi presentato nel seguente elaborato consiste nello studio dell’impacchettamento casuale, in particolare il caso Random Close Packing, di un propellente solido; per fare ciò è stato implementato un codice in ambiente C++ presso l’hangar della Scuola di Ingegneria ed Architettura con sede a Forlì. L’obiettivo principale era quello di trovare la granulometria delle particelle di perclorato di ammonio e delle particelle di alluminio tali da minimizzare gli spazi lasciati vuoti dalle particelle stesse.
Resumo:
This thesis deals with three different physical models, where each model involves a random component which is linked to a cubic lattice. First, a model is studied, which is used in numerical calculations of Quantum Chromodynamics.In these calculations random gauge-fields are distributed on the bonds of the lattice. The formulation of the model is fitted into the mathematical framework of ergodic operator families. We prove, that for small coupling constants, the ergodicity of the underlying probability measure is indeed ensured and that the integrated density of states of the Wilson-Dirac operator exists. The physical situations treated in the next two chapters are more similar to one another. In both cases the principle idea is to study a fermion system in a cubic crystal with impurities, that are modeled by a random potential located at the lattice sites. In the second model we apply the Hartree-Fock approximation to such a system. For the case of reduced Hartree-Fock theory at positive temperatures and a fixed chemical potential we consider the limit of an infinite system. In that case we show the existence and uniqueness of minimizers of the Hartree-Fock functional. In the third model we formulate the fermion system algebraically via C*-algebras. The question imposed here is to calculate the heat production of the system under the influence of an outer electromagnetic field. We show that the heat production corresponds exactly to what is empirically predicted by Joule's law in the regime of linear response.
Resumo:
This work has mainly focused on the poly (L-lactide) (PLLA) which is a material for multiple applications with performances comparable to those of petrochemical polymers (PP, PS, PET, etc. ...), readily recyclable and also compostable. However, PLLA has certain shortcomings that limit its applications. It is a brittle, hard polymer with a very low elongation at break, hydrophobic, exhibits low crystallization kinetics and takes a long time to degrade. The properties of PLLA may be modified by copolymerization (random, block, and graft) of L-lactide monomers with other co-monomers. In this thesis it has been studied the crystallization and morphology of random copolymers poly (L-lactide-ran-ε-caprolactone) with different compositions of the two monomers since the physical, mechanical, optical and chemical properties of a material depend on this behavior. Thermal analyses were performed by differential scanning calorimetry (DSC) and thermogravimetry (TGA) to observe behaviors due to the different compositions of the copolymers. The crystallization kinetics and morphology of poly (L-lactide-ran-ε-caprolactone) was investigated by polarized light optical microscopy (PLOM) and differential scanning calorimetry (DSC). Their thermal behavior was observed with crystallization from melt. It was observed that with increasing amounts of PCL in the copolymer, there is a decrease of the thermal degradation. Studies on the crystallization kinetics have shown that small quantities of PCL in the copolymer increase the overall crystallization kinetics and the crystal growth rate which decreases with higher quantities of PCL.
Resumo:
L'obiettivo di questo lavoro di tesi è quello di implementare un codice di calcolo, attraverso l'algoritmo di Lubachevsky-Stillinger, in modo da poter prevedere la frazione volumetrica occupata dalle particelle solide che costituiscono il grain negli endoreattori a propellente solido. Particolare attenzione verrà rivolta al problema dell'impacchettamento sferico random (Random-Close Packing) che tale algoritmo cerca di modellare, e le ipotesi per cui tale modellazione può essere applicata al tipo di problema proposto. Inoltre saranno descritte le procedure effettuate per l'ottenimento dei risultati numerici delle simulazioni e la loro motivazione, oltre ai limiti del modello utilizzato e alle migliorie apportate per un'esecuzione più efficiente e veloce.
Resumo:
In questo elaborato si affronta il progetto di un nucleo di calcolo per misure d'impedenza sulla pelle tramite l'utilizzo di segnali pseudo-random. La misura viene effettuata applicando il segnale casuale all'impedenza per ottenere la risposta impulsiva tramite un'operazione di convoluzione. Il nucleo di calcolo è stato implementato in VHDL.
Resumo:
In most real-life environments, mechanical or electronic components are subjected to vibrations. Some of these components may have to pass qualification tests to verify that they can withstand the fatigue damage they will encounter during their operational life. In order to conduct a reliable test, the environmental excitations can be taken as a reference to synthesize the test profile: this procedure is referred to as “test tailoring”. Due to cost and feasibility reasons, accelerated qualification tests are usually performed. In this case, the duration of the original excitation which acts on the component for its entire life-cycle, typically hundreds or thousands of hours, is reduced. In particular, the “Mission Synthesis” procedure lets to quantify the induced damage of the environmental vibration through two functions: the Fatigue Damage Spectrum (FDS) quantifies the fatigue damage, while the Maximum Response Spectrum (MRS) quantifies the maximum stress. Then, a new random Power Spectral Density (PSD) can be synthesized, with same amount of induced damage, but a specified duration in order to conduct accelerated tests. In this work, the Mission Synthesis procedure is applied in the case of so-called Sine-on-Random vibrations, i.e. excitations composed of random vibrations superimposed on deterministic contributions, in the form of sine tones typically due to some rotating parts of the system (e.g. helicopters, engine-mounted components, …). In fact, a proper test tailoring should not only preserve the accumulated fatigue damage, but also the “nature” of the excitation (in this case the sinusoidal components superimposed on the random process) in order to obtain reliable results. The classic time-domain approach is taken as a reference for the comparison of different methods for the FDS calculation in presence of Sine-on-Random vibrations. Then, a methodology to compute a Sine-on-Random specification based on a mission FDS is presented.
Resumo:
We propose a new and clinically oriented approach to perform atlas-based segmentation of brain tumor images. A mesh-free method is used to model tumor-induced soft tissue deformations in a healthy brain atlas image with subsequent registration of the modified atlas to a pathologic patient image. The atlas is seeded with a tumor position prior and tumor growth simulating the tumor mass effect is performed with the aim of improving the registration accuracy in case of patients with space-occupying lesions. We perform tests on 2D axial slices of five different patient data sets and show that the approach gives good results for the segmentation of white matter, grey matter, cerebrospinal fluid and the tumor.
Resumo:
Delineating brain tumor boundaries from magnetic resonance images is an essential task for the analysis of brain cancer. We propose a fully automatic method for brain tissue segmentation, which combines Support Vector Machine classification using multispectral intensities and textures with subsequent hierarchical regularization based on Conditional Random Fields. The CRF regularization introduces spatial constraints to the powerful SVM classification, which assumes voxels to be independent from their neighbors. The approach first separates healthy and tumor tissue before both regions are subclassified into cerebrospinal fluid, white matter, gray matter and necrotic, active, edema region respectively in a novel hierarchical way. The hierarchical approach adds robustness and speed by allowing to apply different levels of regularization at different stages. The method is fast and tailored to standard clinical acquisition protocols. It was assessed on 10 multispectral patient datasets with results outperforming previous methods in terms of segmentation detail and computation times.
Resumo:
We present an automatic method to segment brain tissues from volumetric MRI brain tumor images. The method is based on non-rigid registration of an average atlas in combination with a biomechanically justified tumor growth model to simulate soft-tissue deformations caused by the tumor mass-effect. The tumor growth model, which is formulated as a mesh-free Markov Random Field energy minimization problem, ensures correspondence between the atlas and the patient image, prior to the registration step. The method is non-parametric, simple and fast compared to other approaches while maintaining similar accuracy. It has been evaluated qualitatively and quantitatively with promising results on eight datasets comprising simulated images and real patient data.
Resumo:
We use a conceptual model to investigate how randomly varying building heights within a city affect the atmospheric drag forces and the aerodynamic roughness length of the city. The model is based on the assumptions regarding wake spreading and mutual sheltering effects proposed by Raupach (Boundary-Layer Meteorol 60:375-395, 1992). It is applied both to canopies having uniform building heights and to those having the same building density and mean height, but with variability about the mean. For each simulated urban area, a correction is determined, due to height variability, to the shear stress predicted for the uniform building height case. It is found that u (*)/u (*R) , where u (*) is the friction velocity and u (*R) is the friction velocity from the uniform building height case, is expressed well as an algebraic function of lambda and sigma (h) /h (m) , where lambda is the frontal area index, sigma (h) is the standard deviation of the building height, and h (m) is the mean building height. The simulations also resulted in a simple algebraic relation for z (0)/z (0R) as a function of lambda and sigma (h) /h (m) , where z (0) is the aerodynamic roughness length and z (0R) is z (0) found from the original Raupach formulation for a uniform canopy. Model results are in keeping with those of several previous studies.
Resumo:
The goal of this study was to evaluate in vitro and in vivo the effects of up-regulation of the proangiogenic hypoxia inducible factor (HIF)-1α induced by dimethyloxalylglycine on endothelial cell cultures and on skin flap survival.