935 resultados para Random Walk Models
Resumo:
We describe the canonical and microcanonical Monte Carlo algorithms for different systems that can be described by spin models. Sites of the lattice, chosen at random, interchange their spin values, provided they are different. The canonical ensemble is generated by performing exchanges according to the Metropolis prescription whereas in the microcanonical ensemble, exchanges are performed as long as the total energy remains constant. A systematic finite size analysis of intensive quantities and a comparison with results obtained from distinct ensembles are performed and the quality of results reveal that the present approach may be an useful tool for the study of phase transitions, specially first-order transitions. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Mixed models may be defined with or without reference to sampling, and can be used to predict realized random effects, as when estimating the latent values of study subjects measured with response error. When the model is specified without reference to sampling, a simple mixed model includes two random variables, one stemming from an exchangeable distribution of latent values of study subjects and the other, from the study subjects` response error distributions. Positive probabilities are assigned to both potentially realizable responses and artificial responses that are not potentially realizable, resulting in artificial latent values. In contrast, finite population mixed models represent the two-stage process of sampling subjects and measuring their responses, where positive probabilities are only assigned to potentially realizable responses. A comparison of the estimators over the same potentially realizable responses indicates that the optimal linear mixed model estimator (the usual best linear unbiased predictor, BLUP) is often (but not always) more accurate than the comparable finite population mixed model estimator (the FPMM BLUP). We examine a simple example and provide the basis for a broader discussion of the role of conditioning, sampling, and model assumptions in developing inference.
Resumo:
In this paper we study the accumulated claim in some fixed time period, skipping the classical assumption of mutual independence between the variables involved. Two basic models are considered: Model I assumes that any pair of claims are equally correlated which means that the corresponding square-integrable sequence is exchangeable one. Model 2 states that the correlations between the adjacent claims are the same. Recurrence and explicit expressions for the joint probability generating function are derived and the impact of the dependence parameter (correlation coefficient) in both models is examined. The Markov binomial distribution is obtained as a particular case under assumptions of Model 2. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The generalized Birnbaum-Saunders distribution pertains to a class of lifetime models including both lighter and heavier tailed distributions. This model adapts well to lifetime data, even when outliers exist, and has other good theoretical properties and application perspectives. However, statistical inference tools may not exist in closed form for this model. Hence, simulation and numerical studies are needed, which require a random number generator. Three different ways to generate observations from this model are considered here. These generators are compared by utilizing a goodness-of-fit procedure as well as their effectiveness in predicting the true parameter values by using Monte Carlo simulations. This goodness-of-fit procedure may also be used as an estimation method. The quality of this estimation method is studied here. Finally, through a real data set, the generalized and classical Birnbaum-Saunders models are compared by using this estimation method.
Resumo:
We consider a generalized leverage matrix useful for the identification of influential units and observations in linear mixed models and show how a decomposition of this matrix may be employed to identify high leverage points for both the marginal fitted values and the random effect component of the conditional fitted values. We illustrate the different uses of the two components of the decomposition with a simulated example as well as with a real data set.
Resumo:
In this review paper we collect several results about copula-based models, especially concerning regression models, by focusing on some insurance applications. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Mixed linear models are commonly used in repeated measures studies. They account for the dependence amongst observations obtained from the same experimental unit. Often, the number of observations is small, and it is thus important to use inference strategies that incorporate small sample corrections. In this paper, we develop modified versions of the likelihood ratio test for fixed effects inference in mixed linear models. In particular, we derive a Bartlett correction to such a test, and also to a test obtained from a modified profile likelihood function. Our results generalize those in [Zucker, D.M., Lieberman, O., Manor, O., 2000. Improved small sample inference in the mixed linear model: Bartlett correction and adjusted likelihood. Journal of the Royal Statistical Society B, 62,827-838] by allowing the parameter of interest to be vector-valued. Additionally, our Bartlett corrections allow for random effects nonlinear covariance matrix structure. We report simulation results which show that the proposed tests display superior finite sample behavior relative to the standard likelihood ratio test. An application is also presented and discussed. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Although the asymptotic distributions of the likelihood ratio for testing hypotheses of null variance components in linear mixed models derived by Stram and Lee [1994. Variance components testing in longitudinal mixed effects model. Biometrics 50, 1171-1177] are valid, their proof is based on the work of Self and Liang [1987. Asymptotic properties of maximum likelihood estimators and likelihood tests under nonstandard conditions. J. Amer. Statist. Assoc. 82, 605-610] which requires identically distributed random variables, an assumption not always valid in longitudinal data problems. We use the less restrictive results of Vu and Zhou [1997. Generalization of likelihood ratio tests under nonstandard conditions. Ann. Statist. 25, 897-916] to prove that the proposed mixture of chi-squared distributions is the actual asymptotic distribution of such likelihood ratios used as test statistics for null variance components in models with one or two random effects. We also consider a limited simulation study to evaluate the appropriateness of the asymptotic distribution of such likelihood ratios in moderately sized samples. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Prediction of random effects is an important problem with expanding applications. In the simplest context, the problem corresponds to prediction of the latent value (the mean) of a realized cluster selected via two-stage sampling. Recently, Stanek and Singer [Predicting random effects from finite population clustered samples with response error. J. Amer. Statist. Assoc. 99, 119-130] developed best linear unbiased predictors (BLUP) under a finite population mixed model that outperform BLUPs from mixed models and superpopulation models. Their setup, however, does not allow for unequally sized clusters. To overcome this drawback, we consider an expanded finite population mixed model based on a larger set of random variables that span a higher dimensional space than those typically applied to such problems. We show that BLUPs for linear combinations of the realized cluster means derived under such a model have considerably smaller mean squared error (MSE) than those obtained from mixed models, superpopulation models, and finite population mixed models. We motivate our general approach by an example developed for two-stage cluster sampling and show that it faithfully captures the stochastic aspects of sampling in the problem. We also consider simulation studies to illustrate the increased accuracy of the BLUP obtained under the expanded finite population mixed model. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
We analyze data obtained from a study designed to evaluate training effects on the performance of certain motor activities of Parkinson`s disease patients. Maximum likelihood methods were used to fit beta-binomial/Poisson regression models tailored to evaluate the effects of training on the numbers of attempted and successful specified manual movements in 1 min periods, controlling for disease stage and use of the preferred hand. We extend models previously considered by other authors in univariate settings to account for the repeated measures nature of the data. The results suggest that the expected number of attempts and successes increase with training, except for patients with advanced stages of the disease using the non-preferred hand. Copyright (c) 2008 John Wiley & Sons, Ltd.
Resumo:
This paper provides general matrix formulas for computing the score function, the (expected and observed) Fisher information and the A matrices (required for the assessment of local influence) for a quite general model which includes the one proposed by Russo et al. (2009). Additionally, we also present an expression for the generalized leverage on fixed and random effects. The matrix formulation has notational advantages, since despite the complexity of the postulated model, all general formulas are compact, clear and have nice forms. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Backgound and aims: The main purpose of the PEDAL study is to identify and estimate sample individual pharmacokinetic- pharmacodynamic (PK/PD) models for duodenal infusion of levodopa/carbidopa (Duodopa®) that can be used for in numero simulation of treatment strategies. Other objectives are to study the absorption of Duodopa® and to form a basis for power calculation for a future larger study. PK/PD based on oral levodopa is problematic because of irregular gastric emptying. Preliminary work with data from [Gundert-Remy U et al. Eur J Clin Pharmacol 1983;25:69-72] suggested that levodopa infusion pharmacokinetics can be described by a two-compartment model. Background research led to a hypothesis for an effect model incorporating concentration-unrelated fluctuations, more complex than standard E-max models. Methods: PEDAL involved a few patients already on Duodopa®. A bolus dose (normal morning dose plus 50%) was given after a washout during night. Data collection continued until the clinical effect was back at baseline. The procedure was repeated on two non-consecutive days per patient. The following data were collected in 5 to 15 minutes intervals: i) Accelerometer data. ii) Three e-diary questions about ability to walk, feelings of “off” and “dyskinesia”. iii) Clinical assessment of motor function by a physician. iv) Plasma concentrations of levodopa, carbidopa and the metabolite 3-O-methyldopa. The main effect variable will be the clinical assessment. Results: At date of abstract submission, lab analyses were currently being performed. Modelling results, simulation experiments and conclusions will be presented in our poster.
Resumo:
This paper presents a two-step pseudo likelihood estimation technique for generalized linear mixed models with the random effects being correlated between groups. The core idea is to deal with the intractable integrals in the likelihood function by multivariate Taylor's approximation. The accuracy of the estimation technique is assessed in a Monte-Carlo study. An application of it with a binary response variable is presented using a real data set on credit defaults from two Swedish banks. Thanks to the use of two-step estimation technique, the proposed algorithm outperforms conventional pseudo likelihood algorithms in terms of computational time.
Resumo:
We present the hglm package for fitting hierarchical generalized linear models. It can be used for linear mixed models and generalized linear mixed models with random effects for a variety of links and a variety of distributions for both the outcomes and the random effects. Fixed effects can also be fitted in the dispersion part of the model.
Resumo:
Background: The sensitivity to microenvironmental changes varies among animals and may be under genetic control. It is essential to take this element into account when aiming at breeding robust farm animals. Here, linear mixed models with genetic effects in the residual variance part of the model can be used. Such models have previously been fitted using EM and MCMC algorithms. Results: We propose the use of double hierarchical generalized linear models (DHGLM), where the squared residuals are assumed to be gamma distributed and the residual variance is fitted using a generalized linear model. The algorithm iterates between two sets of mixed model equations, one on the level of observations and one on the level of variances. The method was validated using simulations and also by re-analyzing a data set on pig litter size that was previously analyzed using a Bayesian approach. The pig litter size data contained 10,060 records from 4,149 sows. The DHGLM was implemented using the ASReml software and the algorithm converged within three minutes on a Linux server. The estimates were similar to those previously obtained using Bayesian methodology, especially the variance components in the residual variance part of the model. Conclusions: We have shown that variance components in the residual variance part of a linear mixed model can be estimated using a DHGLM approach. The method enables analyses of animal models with large numbers of observations. An important future development of the DHGLM methodology is to include the genetic correlation between the random effects in the mean and residual variance parts of the model as a parameter of the DHGLM.