994 resultados para Ramachandra shukla
Resumo:
We investigate the nonlinear propagation of electromagnetic waves in left-handed materials. For this purpose, we consider a set of coupled nonlinear Schrodinger (CNLS) equations, which govern the dynamics of coupled electric and magnetic field envelopes. The CNLS equations are used to obtain a nonlinear dispersion, which depicts the modulational stability profile of the coupled plane-wave solutions in left-handed materials. An exact (in)stability criterion for modulational interactions is derived, and analytical expressions for the instability growth rate are obtained.
Resumo:
The nonlinear coupling between two magnetic-field-aligned electromagnetic electron-cyclotron (EMEC) waves in plasmas is considered. Evaluating the ponderomotive coupling between the EMEC waves and quasistationary plasma density perturbations, a pair of coupled nonlinear Schrodinger equations (CNLSEs) is obtained. The CNLSEs are then used to investigate the occurrence of modulational instability in magnetized plasmas. Waves in the vicinity of the zero-group-dispersion point are considered, so that the group dispersion terms may either bear the same or different signs. It is found that a stable EMEC wave can be destabilized due to its nonlinear interactions with an unstable one, while a pair of unstable EMEC waves yields an increased instability growth rate. Individually stable waves remain stable while interacting with one another. Stationary nonlinear solutions of the coupled equations are presented. The relevance of our investigation to nonlinear phenomena in space plasmas is discussed. (c) 2005 American Institute of Physics.
Resumo:
The parametric coupling between large amplitude magnetic field-aligned circularly polarized electromagnetic ion-cyclotron (EMIC) waves and ponderomotively driven ion-acoustic perturbations in magnetized space plasmas is considered. A cubic nonlinear Schrodinger equation for the modulated EMIC wave envelope is derived, and then solved analytically. The modulated EMIC waves are found to be stable (unstable) against ion-acoustic density perturbations, in the subsonic (supersonic, respectively) case, and they may propagate as "supersonic bright" ("subsonic dark", i.e. "black" or "grey") type envelope solitons, i.e. electric field pulses (holes, voids), associated with (co-propagating) density humps. Explicit bright and dark (black/grey) envelope excitation profiles are presented, and the relevance of our investigation to space plasmas is discussed.
Resumo:
The stability of colliding Bose-Einstein condensates is investigated. A set of coupled Gross-Pitaevskii equations is thus considered, and analyzed via a perturbative approach. No assumption is made on the signs ( or magnitudes) of the relevant parameters like the scattering lengths and the coupling coefficients. The formalism is therefore valid for asymmetric as well as symmetric coupled condensate wave states. A new set of explicit criteria is derived and analyzed. An extended instability region, in addition to an enhanced instability growth rate, is predicted for unstable two component bosons, as compared to the individual ( uncoupled) state.
Linear and nonlinear dynamics of a dust bicrystal consisting of positive and negative dust particles
Resumo:
A dusty plasma crystalline configuration consisting of charged dust grains of alternating charge sign (.../+/-/+/-/+/...) and mass is considered. Both charge and mass of each dust species are taken to be constant. Considering the equations of longitudinal motion, a dispersion relation for linear longitudinal vibrations is derived from first principles and then analyzed. Two harmonic modes are obtained, namely, an acoustic mode and an inverse-dispersive optic-like one. The nonlinear aspects of acoustic longitudinal dust grain motion are addressed via a generalized Boussinesq (and, alternatively, a generalized Korteweg-de Vries) description. (C) 2005 American Institute of Physics.
Resumo:
The nonlinear aspects of charged dust grain motion in a one-dimensional dusty plasma (DP) monolayer are discussed. Both horizontal (longitudinal, acoustic mode) and vertical (transverse, optic mode) displacements are considered, and various types of localized excitations are reviewed, in a continuum approximation. Dust crystals are shown to support nonlinear kink-shaped supersonic longitudinal solitary excitations, as well as modulated envelope (either longitudinal or transverse) localized modes. The possibility for Discrete Breather (DB-) type excitations (Intrinsic Localized Modes, ILMs) to occur is investigated, from first principles. These highly localized excitations owe their existence to lattice discreteness, in combination with the interaction and/or
substrate (sheath) potential nonlinearity. This possibility may open new directions in DP- related research. The relation to previous results on atomic chains as well as to experimental results on strongly-coupled dust layers in gas discharge plasmas is discussed.
Resumo:
The nonlinear interaction between magnetic-field-aligned coherent whistlers and dust-acoustic perturbations (DAPs) in a magnetized dusty plasma is considered. The interaction is governed by a pair of equations consisting of a nonlinear Schrodinger equation for the modulated whistler wave packet and an equation for the nonresonant DAPs in the presence of the ponderomotive force generated by the whistlers. The coupled equations are employed to investigate the occurrence of modulational instability, in addition to the formation of whistler envelope solitons. This investigation is relevant to amplitude modulated electron whistlers in magnetized space dusty plasmas. (c) 2005 American Institute of Physics.
Resumo:
We discuss the effect of the attractive force associated with overlapping Debye spheres on the dispersion properties of the longitudinal and transverse dust lattice waves in strongly coupled dust crystals. The dust grain attraction is shown to contribute to a destabilization of the longitudinal dust lattice oscillations. The (optic-like) transverse mode dispersion law is shown to change. due to the Debye sphere dressing effect, from the known inverse-dispersive ("backward wave") form into a normal dispersive law (i.e. the group velocity changes sign). The stability of one-dimensionless bi-layers, consisting of (alternating) negatively and positively charged dust particles, is also discussed. The range of parameter values (mainly in terms of the lattice parameter kappa) where the above predictions are valid, are presented. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
A pair plasma consisting of two types of ions, possessing equal masses and opposite charges, is considered. The nonlinear propagation of modulated electrostatic wave packets is studied by employing a two-fluid plasma model. Considering propagation parallel to the external magnetic field, two distinct electrostatic modes are obtained, namely a quasiacoustic lower moddfe and a Langmuir-like, as optic-type upper one, in agreement with experimental observations and theoretical predictions. Considering small yet weakly nonlinear deviations from equilibrium, and adopting a multiple-scale technique, the basic set of model equations is reduced to a nonlinear Schrodinger equation for the slowly varying electric field perturbation amplitude. The analysis reveals that the lower (acoustic) mode is stable and may propagate in the form of a dark-type envelope soliton (a void) modulating a carrier wave packet, while the upper linear mode is intrinsically unstable, and may favor the formation of bright-type envelope soliton (pulse) modulated wave packets. These results are relevant to recent observations of electrostatic waves in pair-ion (fullerene) plasmas, and also with respect to electron-positron plasma emission in pulsar magnetospheres. (c) 2006 American Institute of Physics.
Resumo:
We propose a possible mechanism for the generation of magnetic fields in negative refraction index composite metamaterials. Considering the propagation of a high-frequency modulated amplitude electric field in a left-handed material (LHM), we show that the ponderomotive interaction between the field and low-frequency potential distributions leads to spontaneous generation of magnetic fields, whose form and properties are discussed.
Resumo:
A dusty plasma crystalline configuration with equal charge dust grains and mass is considered. Both charge and mass of each dust species are taken to be constant. Two differential equations for a two-dimensional hexagonal crystal on the basis of a Yukawa-type potential energy and a
Resumo:
The nonlinear coupling between the Alfven-Rao (AR) and dust-Alfven (DA) modes in a uniform magnetized dusty plasma is considered. For this purpose, multi- fluid equations (composed of the continuity and momentum equations), the laws of Faraday and Ampere and the quasi-neutrality condition are adopted to derive a set of equations, which show how the fields of the modes are nonlinearly coupled. The equations are then used to investigate decay and modulational instabilities in magnetized dusty plasmas. Stationary nonlinear solutions of the coupled AR and DA equations are presented. The relevance of the investigation to nonlinear phenomena (instabilities and localized structures) in interstellar molecular clouds is also discussed.
Resumo:
The nonlinear propagation of amplitude-modulated electrostatic wavepackets in an electron-positron-ion (e-p-i) plasma is considered, by employing a two-fluid plasma model. Considering propagation parallel to the external magnetic field, two distinct electrostatic modes are obtained, namely a quasi-thermal acoustic-like lower mode and a Langmuir-like optic-type upper one. These results equally apply in warm pair ion ( e. g. fullerene) plasmas contaminated by a small fraction of stationary ions ( or dust), in agreement with experimental observations and theoretical predictions in pair plasmas. Considering small yet weakly nonlinear deviations from equilibrium, and adopting a multiple-scales perturbation technique, the basic set of model equations is reduced to a nonlinear Schrodinger (NLS) equation for the slowly varying electric field perturbation amplitude. The analysis reveals that the lower ( acoustic) mode is mostly stable for large wavelengths, and may propagate in the form of a dark-type envelope soliton ( a void) modulating a carrier wavepacket, while the upper linear mode is intrinsically unstable, and thus favours the formation of bright-type envelope soliton ( pulse) modulated wavepackets. The stability ( instability) range for the acoustic ( Langmuir-like optic) mode shifts to larger wavenumbers as the positive-to-negative ion temperature ( density) ratio increases. These results may be of relevance in astrophysical contexts, where e-p-i plasmas are encountered, and may also serve as prediction of the behaviour of doped ( or dust-contaminated) fullerene plasmas, in the laboratory.
Resumo:
The nonlinear amplitude modulation of electrostatic waves propagating in a collisionless two-component plasma consisting of negative and positive species of equal mass and absolute charge is investigated. Pair-ion (e.g., fullerene) and electron-positron (e-p) plasmas (neglecting recombination) are covered by this description. Amplitude perturbation oblique to the direction of propagation of the wave has been considered. Two distinct linear electrostatic modes exist, namely an acoustic lower mode and Langmuir-type optic-type upper one. The behavior of each of these modes is examined from the modulational stability point of view. The stability criteria are investigated, depending on the electrostatic carrier wave number, the angle theta between the modulation and propagation directions, and the positron-to-electron temperature ratio sigma. The analysis shows that modulated electrostatic wavepackets associated to the lower (acoustic) mode are unstable, for small values of carrier wave number k (i.e., for large wavelength lambda) and for finite (small) values of the angle theta (yet stable for higher theta), while those related to the upper (optic-like) mode are stable for large values of the angle theta only, in the same limit, yet nearly for all values of sigma. These results are of relevance in astrophysical contexts (e.g., in pulsar environments), where e-p plasmas are encountered, or in pair fullerene-ion plasmas, in laboratory. (c) 2006 American Institute of Physics.