986 resultados para Radio waves.


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates the interaction of solitary waves (representative of tsunamis) with idealized flat-topped conical islands. The investigation is based on simulations produced by a numerical model that solves the two-dimensional Boussinesq-type equations of Madsen and Sørensen using a total variation diminishing Lax-Wendroff scheme. After verification against published laboratory data on solitary wave run-up at a single island, the numerical model is applied to study the maximum run-up at a pair of identical conical islands located at different spacings apart for various angles of wave attack. The predicted results indicate that the maximum run-up can be attenuated or enhanced according to the position of the second island because of wave refraction, diffraction, and reflection. It is also observed that the local wave height and hence run-up can be amplified at certain gap spacing between the islands, owing to the interference between the incident waves and the reflected waves between islands. © 2012 American Society of Mechanical Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper follows the work of A.V. Shanin on diffraction by an ideal quarter-plane. Shanin's theory, based on embedding formulae, the acoustic uniqueness theorem and spherical edge Green's functions, leads to three modified Smyshlyaev formulae, which partially solve the far-field problem of scattering of an incident plane wave by a quarter-plane in the Dirichlet case. In this paper, we present similar formulae in the Neumann case, and describe a numerical method allowing a fast computation of the diffraction coefficient using Shanin's third modified Smyshlyaev formula. The method requires knowledge of the eigenvalues of the Laplace-Beltrami operator on the unit sphere with a cut, and we also describe a way of computing these eigenvalues. Numerical results are given for different directions of incident plane wave in the Dirichlet and the Neumann cases, emphasising the superiority of the third modified Smyshlyaev formula over the other two. © 2011 Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The characteristics and dispersion of the distinct surface acoustic waves (SAWs) propagating in ZnO/GaAs heterostructures have been studied experimentally and theoretically. Besides the Rayleigh mode, strong Sezawa modes, which propagate confined in the overlayer, arise due to the smaller sound velocity in ZnO than in the substrate. The design parameters of the structure providing the strongest piezoelectric field at a given depth within the layered system for the different modes have been determined. The piezoelectric field of the Rayleigh mode is shown to be more than 10 times stronger at the interface region of the tailored ZnO/GaAs structure than at the surface region of the bulk GaAs, whereas the same comparison for the first Sezawa mode yields a factor of 2. This enhancement, together with the capacity of selecting waves with different piezoelectric and strain field depth profiles, will facilitate the development of SAW-modulated optoelectronic applications in GaAs-based systems. © 2011 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Passive Radio Frequency Identification (RFID) has revolutionized the way in which products are identified. This paper considers the effect of metals on the performance of RFID at ultra high frequency (UHF). The paper establishes read patterns in space, highlighting the interference of RF waves due to three different metals, one ferrous and the other two non ferrous, when placed behind a transponder. The effect of thickness of the metal plate is also examined. Different metals have been found to have different interference effects although there are some similarities in their read patterns related to their material properties. Also experiments have been carried out to identify and establish various methods of improving this performance. Finally, differences between performance-measuring parameters, namely attenuating transmitted power and calculating read rate at a fixed attenuation are established and possible reasons of these observations are presented. © 2007 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is the third part of a report on systematic measurements and analyses of wind-generated water waves in a laboratory environment. The results of the measurements of the turbulent flow on the water side are presented here, the details of which include the turbulence structure, the correlation functions, and the length and velocity scales. It shows that the mean turbulent velocity profiles are logarithmic, and the flows are hydraulically rough. The friction velocity in the water boundary layer is an order of magnitude smaller than that in the wind boundary layer. The level of turbulence is enhanced immediately beneath the water surface due to micro-breaking, which reflects that the Reynolds shear stress is of the order u *w 2. The vertical velocities of the turbulence are related to the relevant velocity scale at the still-water level. The autocorrelation function in the vertical direction shows features of typical anisotropic turbulence comprising a large range of wavelengths. The ratio between the microscale and macroscale can be expressed as λ/Λ=a Re Λ n, with the exponent n slightly different from -1/2, which is the value when turbulence production and dissipation are in balance. On the basis of the wavelength and turbulent velocity, the free-surface flows in the present experiments fall into the wavy free-surface flow regime. The integral turbulent scale on the water side alone underestimates the degree of disturbance at the free surface. © 2012 Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study detailed the structure of turbulence in the air-side and water-side boundary layers in wind-induced surface waves. Inside the air boundary layer, the kurtosis is always greater than 3 (the value for normal distribution) for both horizontal and vertical velocity fluctuations. The skewness for the horizontal velocity is negative, but the skewness for the vertical velocity is always positive. On the water side, the kurtosis is always greater than 3, and the skewness is slightly negative for the horizontal velocity and slightly positive for the vertical velocity. The statistics of the angle between the instantaneous vertical fluctuation and the instantaneous horizontal velocity in the air is similar to those obtained over solid walls. Measurements in water show a large variance, and the peak is biased towards negative angles. In the quadrant analysis, the contribution of quadrants Q2 and Q4 is dominant on both the air side and the water side. The non-dimensional relative contributions and the concentration match fairly well near the interface. Sweeps in the air side (belonging to quadrant Q4) act directly on the interface and exert pressure fluctuations, which, in addition to the tangential stress and form drag, lead to the growth of the waves. The water drops detached from the crest and accelerated by the wind can play a major role in transferring momentum and in enhancing the turbulence level in the water side.On the air side, the Reynolds stress tensor's principal axes are not collinear with the strain rate tensor, and show an angle α σ≈=-20°to-25°. On the water side, the angle is α σ≈=-40°to-45°. The ratio between the maximum and the minimum principal stresses is σ a/σ b=3to4 on the air side, and σ a/σ b=1.5to3 on the water side. In this respect, the air-side flow behaves like a classical boundary layer on a solid wall, while the water-side flow resembles a wake. The frequency of bursting on the water side increases significantly along the flow, which can be attributed to micro-breaking effects - expected to be more frequent at larger fetches. © 2012 Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A newly developed computer model, which solves the horizontal two-dimensional Boussinesq equations using a total variation diminishing Lax-Wendroff scheme, has been used to study the runup of solitary waves, with various heights, on idealized conical islands consisting of side slopes of different angles. This numerical model has first been validated against high-quality laboratory measurements of solitary wave runups on a uniform plane slope and on an isoliated conical island, with satisfactory agreement being achieved. An extensive parametric study concerning the effects of the wave height and island slope on the solitary wave runup has subsequently been carried out. Strong wave shoaling and diffraction effects have been observed for all the cases investigated. The relationship between the runup height and wave height has been obtained and compared with that for the case on uniform plane slopes. It has been found that the runup on a conical island is generally lower than that on a uniform plane slope, as a result of the two-dimensional effect. The correlation between the runup with the side slope of an island has also been identified, with higher runups on milder slopes. This comprehensive study on the soliton runup on islands is relevant to the protection of coastal and inland regions from extreme wave attacks. © the Coastal Education & Research Foundation 2012.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper provides a review of important results concerning the Geometrical Theory of Diffraction and Geometrical Optics. It also reviews the properties of the existing solution for the problem of diffraction of a time harmonic plane wave by a half-plane. New mathematical expressions are derived for the wave fields involved in the problem of diffraction of a time harmonic plane wave by a quarter-plane, including the secondary radiated waves. This leads to a precise representation of the diffraction coefficient describing the diffraction occurring at the corner of the quarter-plane. Our results for the secondary radiated waves are an important step towards finding a formula giving the corner diffraction coefficient everywhere. © 2012 The authors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel technique is proposed to magnetize bulk superconductors, which has the potential to build up strong superconducting magnets. Instead of conventionally using strong magnetic pulses, periodical magnetic waves with strength as low as that of rare-earth magnets are applied. These magnetic waves travel from the periphery to the center of a bulk superconductor and become trapped little by little. In this way, bulk superconductors can gradually be magnetized. To generate these magnetic waves, a thermally actuated magnet was developed, which is constructed by a heating/cooling switch system, a rare-earth bulk magnet, and a Gadolinium (Gd) bulk. The heating/cooling switch system controls the temperature of the Gd bulk, which, along with the rare-earth magnet underneath, can transform thermal signals into magnetic waves. The modeling results of the thermally actuated magnet show that periodical magnetic waves can effectively be generated by applying heating and cooling pulses in turn. A YBCO bulk was tested in liquid nitrogen under the magnetic waves, and a notable accumulation of magnetic flux density was observed. © 2006 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Low attenuation of Sezawa modes operating at GHz frequencies in ZnO/GaAs systems immersed in liquid helium has been observed. This unexpected behaviour for Rayleigh-like surface acoustic waves (SAWs) is explained in terms of the calculated depth profiles of their acoustic Poynting vectors. This analysis allows reproduction of the experimental dispersion of the attenuation coefficient. In addition, the high attenuation of the Rayleigh mode is compensated by the strengthening provided by the ZnO layer. The introduction of the ZnO film will enable the operation of SAW-driven single-photon sources in GaAs-based systems with the best thermal stability provided by the liquid helium bath. © 2013 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract (40-Word Limit): A novel method for sending MIMO wireless signals to remote antenna units over a single multimode fibre is proposed. MIMO streams are sent via different fibre modes using mode division multiplexing. Combined channel measurements of 2km MMF and a typical indoor radio environment show in principle a 2x2 MIMO link at carrier frequencies up to 6GHz.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the propagation of acoustic waves along a cylindrical duct carrying radially sheared axial mean flow, in which the duct radius is allowed to vary slowly along the axis. In previous work [A.J. Cooper & N. Peake, Journal of Fluid Mechanics 445 (2001) 207-234.] radially sheared axial mean flow with nonzero swirl in a slowly varying duct was considered, but in this paper we set the swirl to zero, thereby allowing simplification of the calculations of both the mean and unsteady flows. In this approach the acoustic wavenumber and corresponding eigenfunction are determined locally, while the wave amplitude is found by solving an evolution equation along the duct. Sample results are presented, including a case in which, perhaps surprisingly, the number of cut-on modes increases as the duct radius decreases. © 2013 Elsevier Ltd. All rights reserved.