970 resultados para RECONSOLIDATION BLOCKADE
Resumo:
PURPOSE OF REVIEW: To give an overview of current evidence for interleukin (IL)-1 blockade in the management of gout. RECENT FINDINGS: Three IL-1 blockers are currently available for clinical use: anakinra, rilonacept and canakinumab. Recent studies have focused on drugs with a long half-life: rilonacept and canakinumab. For treatment of acute gouty arthritis, three randomized controlled trials (RCTs) showed efficacy of canakinumab with some safety concerns and one RCT failed to show efficacy of rilonacept. For prevention of gout flare when starting uric acid lowering therapy (ULT), four RCTs showed efficacy of rilonacept and one RCT showed efficacy of canakinumab. SUMMARY: There is sufficient evidence supporting the use of IL-1 blockers for treatment of acute gouty arthritis or for prevention of gout flares when starting ULT in selected patients, with contraindications or intolerance to conventional therapy. More data are needed to assess safety and to specify their use in routine practice.
Resumo:
1. The availability of orally active specific angiotensin receptor antagonists (AT1 antagonists) has opened new therapeutic choices and provided probes to test the specific role of the renin-angiotensin system in the pathogenesis of cardiovascular disease. 2. The data available so far suggest that the antihypertensive efficacy of angiotensin receptor antagonists is comparable to that of angiotensin-converting enzyme (ACE) inhibitors. This provides further evidence that this latter class of drugs exerts its effect mainly through blockade of the renin-angiotensin enzymatic cascade. As expected, the association of a diuretic exerts an equally strong additive effect to the antihypertensive efficacy of both classes of drugs. 3. The most common side effect of ACE inhibitors, dry cough, does not occur with AT1 antagonists, which confirms the long-held view that this untoward effect of the ACE inhibitors is due to renin-angiotensin-independent mechanisms. 4. Long-term studies with morbidity/mortality outcome results are needed, before a definite position can be assigned to this newcomer in the orchestra of modern antihypertensive drugs. Notwithstanding, this new class of agents already represents an exciting new addition to our therapeutic armamentarium.
Resumo:
Sixteen patients with refractory hypertension were submitted to vigorous sodium depletion while cardiovascular homeostasis was monitored with measurements of hormonal and hemodynamic parameters and repeat saralasin tests. This regimen resulted in a negative sodium balance by an average of 300 mEq. The loss of sodium closely correlated to the decrease of body weight (r = 0.70, p less than 0.005). Blood pressure (BP) decreased from 176/166 +/- 8/3 to 155/109 +/-6/3 mm Hg. There was a significant correlation between percent increments in plasma renin activity (PRA) and the rise in plasma norepinephrine (r = 0.68, p less than 0.05) and a close negative correlation between percent increase in PRA and the ratio of fall in mean blood pressure (MAP) per unit of weight loss (r = -0.73, p less than 0.005). Thus, patients with the least percent increase in PRA demonstrated the greatest fall in BP per unit of weight loss, indicating that relative rather than absolute elevation of renin may be the factor limiting antihypertensive efficacy of sodium depletion. Sodium depletion induced increase in peripheral resistance and decrease in cardiac output, both mostly attributable to relative hyperreninemia. Indeed, the adverse hemodynamic changes were reversed by angiotensin inhibition, during which BP normalized. It is concluded that vigorous sodium depletion complemented by angiotensin blockade or suppression with sympatholytic agents improves management of otherwise refractory hypertension.
Resumo:
Psoriasis is a common T cell-mediated autoimmune inflammatory disease. We show that blocking the interaction of alpha1beta1 integrin (VLA-1) with collagen prevented accumulation of epidermal T cells and immunopathology of psoriasis. Alpha1beta1 integrin, a major collagen-binding surface receptor, was exclusively expressed by epidermal but not dermal T cells. Alpha1beta1-positive T cells showed characteristic surface markers of effector memory cells and contained high levels of interferon-gamma but not interleukin-4. Blockade of alpha1beta1 inhibited migration of T cells into the epidermis in a clinically relevant xenotransplantation model. This was paralleled by a complete inhibition of psoriasis development, comparable to that caused by tumor necrosis factor-alpha blockers. These results define a crucial role for alpha1beta1 in controlling the accumulation of epidermal type 1 polarized effector memory T cells in a common human immunopathology and provide the basis for new strategies in psoriasis treatment focusing on T cell-extracellular matrix interactions.
Resumo:
Objective: To compare effects of a non-renin-angiotensin system (RAS) blocker, using a CCB, or a RAS blocker, using an ARB regimen on the arterial stiffness reduction in postmenopausal hypertensive women. Methods: In this prospective study, a total of 125 hypertensive women (age: 61.4_6 yrs; 98% Caucasian; BW: 71.9_14 kg; BMI: 27.3_5 kg/m2; SBP/ DBP: 158_11/92_9 mmHg) were randomized between ARB (valsartan 320mg_HCTZ) and CCB (amlodipine 10mg _ HCTZ). The primary outcome was carotid-femoral pulse wave velocity (PWV) changes after 38 weeks of treatment. Results: There were no significant differences in baseline demographic data between the two groups. Both treatments effectively lowered BP at the end of the study with similar (p>0.05) reductions in the valsartan (_22.9/_10.9 mmHg) and amlodipine based (_25.2/_11.7 mmHg) treatment groups. Despite a lower (p<0.05 for DBP) central SBP/DBP in the CCB group (_19.2/_10.3 mmHg) compared to the valsartan group (_15.7/_7.6 mmHg) at week 38, a similar reduction in carotid-femoral PWV (_1.7 vs _1.9 m/sec; p>0.05) was observed between both groups. The numerically larger BP reduction observed in the CCB group was associated with a much higher incidence of peripheral edema (77% vs 14%) than the valsartan group. Conclusion: In summary, BP lowering in postmenopausal women led to a reduction in arterial stiffness assessed by PWV measurement. Both regimens reduced PWV at 38 weeks of treatment to a similar degree, despite differences in BP lowering suggesting that the effect of RAS blockade to influence PWV may partly be independent of BP.
Resumo:
Captopril, an orally active angiotensin-converting enzyme inhibitor, has been administered to 81 patients with different types of clinical hypertension. Most of the patients had previously uncontrollable high blood pressure. In order to achieve a satisfactory blood pressure control during long-term captopril therapy, a concomitant decrease in total body sodium was required in more than half of the patients. During our first two years of clinical experience with this new antihypertensive agent, side effects developed in 46.9 per cent of the patients and necessitated the withdrawal of the drug in 23.4 per cent of all patients. Only a few side effects such as hypotensive or syncopal episodes and cold extremities appeared to be due to the chronic blockade of the renin-angiotensin system. The most frequent and the most serious adverse reactions such as skin rash, altered taste, pancytopenia, and pemphigus foliaceus seemed to be specifically drug related. The incidence of cutaneous and taste problems was markedly higher in patients with impaired renal function in whom retention of captopril has been previously demonstrated. This suggests that the occurrence of adverse reactions to captopril could be lowered in the future by using smaller daily doses and by titrating them according to the renal function.
Resumo:
Through its classic effects on sodium and potassium homeostasis, aldosterone, when produced in excess, is associated with the development of hypertension and hence with higher cardiovascular and renal risk. In recent years, experimental and epidemiologic data have suggested that aldosterone also may be linked to high cardiovascular risk independently of its effects on blood pressure. Thus, aldosterone has been associated with obesity and metabolic syndrome in selected populations, and these associations may further contribute to the higher cardiovascular risk of subjects with elevated aldosterone levels. Moreover, aldosterone has been reported to promote inflammation, oxidative stress, and fibrosis in a number of tissues. Clinical evidence indicates that patients with primary hyperaldosteronism have a higher risk of developing cardiovascular and renal complications than patients with essential hypertension who have the same level of blood pressure. Aldosterone receptor blockade has been shown to lower cardiovascular mortality after myocardial infarction and in patients with congestive heart failure. Some studies have also demonstrated that aldosterone blockade could have a favorable impact on the progression of renal disease. However, prospective interventional trials are needed to further evaluate the impact of blockade of aldosterone on cardiovascular risk.
Resumo:
Angiotensin receptor blockers, angiotensin-converting enzyme inhibitors, and diuretics all cause reactive rises in plasma renin concentration, but particularly high levels have been reported with aliskiren. This prompted speculation that blockade of plasma renin activity with aliskiren could be overwhelmed, leading to paradoxical increases in blood pressure. This meta-analysis of data from 4877 patients from 8 randomized, double-blind, placebo- and/or active-controlled trials examined this hypothesis. The analysis focused on the incidence of paradoxical blood pressure increases above predefined thresholds, after > or =4 weeks of treatment with 300 mg of aliskiren, angiotensin receptor blockers (300 mg of irbesartan, 100 mg of losartan, or 320 mg of valsartan), 10 mg of ramipril, 25 mg of hydrochlorothiazide, or placebo. There were no significant differences in the frequency of increases in systolic (>10 mm Hg; P=0.30) or diastolic (>5 mm Hg; P=0.65) pressure among those treated with aliskiren (3.9% and 3.1%, respectively), angiotensin receptor blockers (4.0% and 3.7%), ramipril (5.7% and 2.6%), or hydrochlorothiazide (4.4% and 2.7%). Increases in blood pressure were considerably more frequent in the placebo group (12.6% and 11.4%; P<0.001). None of the 536 patients with plasma renin activity data who received 300 mg of aliskiren exhibited an increase in systolic pressure >10 mm Hg that was associated with an increase in plasma renin activity >0.1 ng/mL per hour. In conclusion, the incidence of blood pressure increases with aliskiren was similar to that during treatment with other antihypertensive drugs. Blood pressure rises on aliskiren treatment were not associated with increases in plasma renin activity. This meta-analysis found no evidence that aliskiren uniquely causes paradoxical rises in blood pressure.
Resumo:
Angiotensin II can raise blood pressure rapidly by inducing direct vasoconstriction and by activating the sympathetic nervous system via central and peripheral mechanisms. In addition, this peptide may act as a growth factor to cause vascular and cardiac hypertrophy (CVH). The structural changes caused by hypertension can therefore be amplified by angiotensin II. Blockade of angiotensin II generation with angiotensin-converting enzyme (ACE) inhibitors appears to be particularly effective in preventing the development of cardiovascular hypertrophy. This beneficial effect might be related to some extent to local accumulation of bradykinin. ACE is one of the enzymes physiologically involved in bradykinin degradation. Treatment of hypertensive rats with a selective bradykinin antagonist can attenuate the blood pressure-lowering effect of ACE inhibition and render less effective the prevention of intimal thickening after endothelial removal from the rat carotid artery. Bradykinin is a vasodilator that acts by increasing the release of endothelium-derived factors such as nitric oxide and prostacyclin, which may have antiproliferative activity. However, blockade of the renin-angiotensin system with an angiotensin II subtype 1-receptor antagonist is also effective in preventing cardiac hypertrophy and neointimal proliferation after endothelial injury. Therefore, the exact contribution of bradykinin to the beneficial effects of ACE inhibition on cardiovascular hypertrophy remains to be further explored.
Resumo:
Acute blockade of the renin-angiotensin system with the parenterally active angiotensin II antagonist saralasin has been shown to effectively lower blood pressure in a large fraction of patients with essential hypertension and to improve hemodynamics in some patients with congestive heart failure. It is now possible to antagonize chronically angiotensin II at its receptor using the non-peptide angiotensin II inhibitor losartan (DuP 753, MK 954). When administered by mouth, this compound induces a dose-dependent inhibition of the pressor response to exogenous angiotensin II. This effect is closely related to circulating levels of the active metabolite E3174. Preliminary studies performed in hypertensive patients suggest that losartan has a blood pressure lowering action equivalent to that of an ACE inhibitor. Whether this compound will compare favorably with ACE inhibitors requires however further investigation.
Resumo:
ABSTRACT: BACKGROUND: Current tools for analgesia are often only partially successful, thus investigations of new targets for pain therapy stimulate great interest. Consequent to peripheral nerve injury, c-Jun N-terminal kinase (JNK) activity in cells of the dorsal root ganglia (DRGs) and spinal cord is involved in triggering neuropathic pain. However, the relative contribution of distinct JNK isoforms is unclear. Using knockout mice for single isoforms, and blockade of JNK activity by a peptide inhibitor, we have used behavioral tests to analyze the contribution of JNK in the development of neuropathic pain after unilateral sciatic nerve transection. In addition, immunohistochemical labelling for the growth associated protein (GAP)-43 and Calcitonin Gene Related Peptide (CGRP) in DRGs was used to relate injury related compensatory growth to altered sensory function. RESULTS: Peripheral nerve injury produced pain-related behavior on the ipsilateral hindpaw, accompanied by an increase in the percentage of GAP43-immunoreactive (IR) neurons and a decrease in the percentage of CGRP-IR neurons in the lumbar DRGs. The JNK inhibitor, D-JNKI-1, successfully modulated the effects of the sciatic nerve transection. The onset of neuropathic pain was not prevented by the deletion of a single JNK isoform, leading us to conclude that all JNK isoforms collectively contribute to maintain neuropathy. Autotomy behavior, typically induced by sciatic nerve axotomy, was absent in both the JNK1 and JNK3 knockout mice. CONCLUSIONS: JNK signaling plays an important role in regulating pain threshold: the inhibition of all of the JNK isoforms prevents the onset of neuropathic pain, while the deletion of a single splice JNK isoform mitigates established sensory abnormalities. JNK inactivation also has an effect on axonal sprouting following peripheral nerve injury.
Resumo:
Whether adenosine, a crucial regulator of the developing cardiovascular system, can provoke arrhythmias in the embryonic/fetal heart remains controversial. Here, we aimed to establish a mechanistic basis of how an adenosinergic stimulation alters function of the developing heart. Spontaneously beating hearts or dissected atria and ventricle obtained from 4-day-old chick embryos were exposed to adenosine or specific agonists of the receptors A(1)AR (CCPA), A(2A)AR (CGS-21680) and A(3)AR (IB-MECA). Expression of the receptors was determined by quantitative PCR. The functional consequences of blockade of NADPH oxidase, extracellular signal-regulated kinase (ERK), phospholipase C (PLC), protein kinase C (PKC) and L-type calcium channel (LCC) in combination with adenosine or CCPA, were investigated in vitro by electrocardiography. Furthermore, the time-course of ERK phosphorylation was determined by western blotting. Expression of A(1)AR, A(2A)AR and A(2B)AR was higher in atria than in ventricle while A(3)AR was equally expressed. Adenosine (100μM) triggered transient atrial ectopy and second degree atrio-ventricular blocks (AVB) whereas CCPA induced mainly Mobitz type I AVB. Atrial rhythm and atrio-ventricular propagation fully recovered after 60min. These arrhythmias were prevented by the specific A(1)AR antagonist DPCPX. Adenosine and CCPA transiently increased ERK phosphorylation and induced arrhythmias in isolated atria but not in ventricle. By contrast, A(2A)AR and A(3)AR agonists had no effect. Interestingly, the proarrhythmic effect of A(1)AR stimulation was markedly reduced by inhibition of NADPH oxidase, ERK, PLC, PKC or LCC. Moreover, NADPH oxidase inhibition or antioxidant MPG prevented both A(1)AR-mediated arrhythmias and ERK phosphorylation. These results suggest that pacemaking and conduction disturbances are induced via A(1)AR through concomitant stimulation of NADPH oxidase and PLC, followed by downstream activation of ERK and PKC with LCC as possible target.
Resumo:
Substance P (SP), an undecapeptide belonging to the tachykinin family, is released during the activation of sensory nerves, and causes vasodilation, edema and pain through activation of tissular Neurokinin 1 receptors. SP proinflammatory effects are terminated by angiotensin converting enzyme (ACE) and neutral endopeptidase (NEP), while the aminopeptidase dipeptidylpeptidase IV (DPPIV) can also play a role. The aim of this randomized, crossover, double-blind study was to assess the cutaneous vasoreactivity (flare and wheal reaction, burning pain sensation) to intradermal injection of ascending doses of SP in six volunteers receiving a single therapeutic dose of the DPPIV inhibitor sitagliptin or a matching placebo. Cutaneous SP challenges produced the expected, dose-dependent flare and wheal response, while eliciting mild to moderate local pain sensation with little dose dependency. However, no differences were shown in the responses observed under sitagliptin compared with placebo, while the study would have been sufficiently powered to detect a clinically relevant increase in sensitivity to SP. The results of this pilot study are in line with proteolytic cleavage of SP by ACE and NEP compensating the blockade of DPPIV to prevent an augmentation of its proinflammatory action.
Resumo:
After years of reciprocal lack of interest, if not opposition, neuroscience and psychoanalysis are poised for a renewed dialogue. This article discusses some aspects of the Freudian metapsychology and its link with specific biological mechanisms. It highlights in particular how the physiological concept of homeostasis resonates with certain fundamental concepts of psychoanalysis. Similarly, the authors underline how the Freud and Damasio theories of brain functioning display remarkable complementarities, especially through their common reference to Meynert and James. Furthermore, the Freudian theory of drives is discussed in the light of current neurobiological evidences of neural plasticity and trace formation and of their relationships with the processes of homeostasis. The ensuing dynamics between traces and homeostasis opens novel avenues to consider inner life in reference to the establishment of fantasies unique to each subject. The lack of determinism, within a context of determinism, implied by plasticity and reconsolidation participates in the emergence of singularity, the creation of uniqueness and the unpredictable future of the subject. There is a gap in determinism inherent to biology itself. Uniqueness and discontinuity: this should today be the focus of the questions raised in neuroscience. Neuroscience needs to establish the new bases of a "discontinuous" biology. Psychoanalysis can offer to neuroscience the possibility to think of discontinuity. Neuroscience and psychoanalysis meet thus in an unexpected way with regard to discontinuity and this is a new point of convergence between them.
Resumo:
OBJECTIVE: To assess whether vasopressin V1a receptor blockade reduces the abnormal vasoactive response to cold in patients suffering from Raynaud's phenomenon (RP). METHODS: SR 49059, an orally active, non-peptidic vasopressin V1a receptor antagonist, was given orally (300 mg once daily) to 20 patients with RP in a single-centre, double-blind, placebo-controlled, randomized cross-over study with two 7-day periods of treatment separated by 21 days of washout. Bilateral finger systolic blood pressure and skin temperature were assessed before and after immersion of the hand in cold water for 3 min (15 degrees C) during the screening phase and three times (before and 2 and 4 h after drug intake) on days 1 and 7 of each of the two treatment periods. Recovery of digital pressure and skin temperature was measured 0, 10, 20 and 32 min after the end of the cold immersion test. RESULTS: SR 49059 significantly attenuated the cold-induced fall in systolic pressure by 14.5% (95% confidence interval 0-29; P = 0.045) on the most affected hand on day 7 compared with placebo. Temperature recovery after the end of the cold test showed a trend to enhancement 2 and 4 h after SR 49059 on day 7 (P = 0.060 and P = 0.062 respectively). The beneficial effects on finger pressure and temperature recovery were obtained without changes in supine blood pressure or in heart rate. CONCLUSION: SR 49059 given orally once a day for 7 days to patients with RP showed favourable effects compared with placebo on finger systolic pressure and temperature recovery after cold immersion, without inducing side-effects.