990 resultados para Quark-gluon coupling
Resumo:
In reply to the criticism made by Mielke in the preceding Comment on our recent paper, we once again explicitly demonstrate the inconsistency of the coupling of a Dirac field to gravitation in the teleparallel equivalent of general relativity. Moreover, we stress that the mentioned inconsistency is generic for all sources with spin and is by no means restricted to the Dirac field. In this sense the SL(4,R)-covariant generalization of the spinor fields in the teleparallel gravity theory is irrelevant to the inconsistency problem.
Resumo:
The possibility that the QCD coupling constant (alpha(s)) has an infrared finite behavior (freezing) has been extensively studied in recent years. We compare phenomenological values of the frozen QCD running coupling between different classes of solutions obtained through non-perturbative Schwinger-Dyson Equations. With these solutions were computed QCD predictions for the asymptotic pion form factor which, in turn, were compared with experiment.
Resumo:
We present a search for electroweak production of single top quarks in the s-channel and t-channel using neural networks for signal-background separation. We have analyzed 230 pb(-1) of data collected with the DO detector at the Fermilab Tevatron Collider at a center-of-mass energy of 1.96 TeV and find no evidence for a single top quark signal. The resulting 95% confidence level upper limits on the single top quark production cross sections are 6.4 pb in the s-channel and 5.0 ph in the t-channel. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The consequences of adding random perturbations (anarchy) to a baseline hierarchical model of quark masses and mixings are explored. Even small perturbations of the order of 5% of the smallest non-zero element can already give deviations significantly affecting parameters of the Cabibbo-Kobayashi-Maskawa (CKM) matrix, so any process generating the anarchy should in general be limited to this order of magnitude. The regularities of quark masses and mixings thus appear to be far from a generic feature of randomness in the mass matrices, and more likely indicate an underlying order. (C) 2001 Published by Elsevier B.V. B.V.
Resumo:
The propagation of a free scalar field phi with mass m in a curved background is generally described by the equation (g(munu) delmudelnu + m(2) + xiR)phi = 0. There exist some arguments in the literature that seem to favor the conformal coupling to the detriment of the minimal one. However, the majority of these claims axe inconclusive. Here we show that the exact Foldy Wouthuysen transformation for spin-0 particle coupled to a wide class of static spacetime metrics exists independently of the value of. Nevertheless, if the coupling is of the conformal type, the gravitational Darwin-like term has an uncomplicated structure and it is proportional to the corresponding term in the fermionic case. In addition, an independent computation of this term, which has its origin in the zitterbewegung fluctuation of the boson's position with the mean square <(deltar)(2)> approximate to 1/m(2), gives a result that coincides with that obtained using the aforementioned exact transformation with xi = 1/6.
Resumo:
We consider here a Coulomb gauge quark model which includes an explicit construct for a nontrivial vacuum structure in QCD at finite density. Non-perturbative renormalization of ultraviolet diverges is performed by adding counterterms. The equation of state for u and d quark matter at zero temperature is calculated in the Hartree-Fock approximation.
Resumo:
The e(+)e(-)-->b (B) over bar nu(ν) over bar process, where nu is an electron, muon, or tau-lepton neutrino, is analyzed in detail for the general form of the coupling constant of a Higgs boson with b quarks, with the (m(b)/v)(a + igamma(5)b) parameterization of the Hb (b) over bar interaction. This process is shown to be highly sensitive to this coupling constant. Experiments at the future with roots = 500-GeV linear collider will provide limits of 2 and 20% for deviations of the parameters a and b, respectively, from their Standard Model values. Results concerning the e(+)e(-)-->b (b) over bar nu(ν) over bar process in combination with the independent measurements of the partial width Gamma(H --> b (b) over bar) can testify to the CP origin of the Higgs sector of the theory. (C) 2003 MAIK Nauka/Interperiodica.
Resumo:
The description of the short-range part of the nucleon forces in terms of quark degrees of freedom is tested by supplementing, to the short range quark cluster model, a long range mesonic force well founded theoretically.
Resumo:
We demonstrate the formation of bright solitons in coupled self-defocusing nonlinear Schrodinger (NLS) equation supported by attractive coupling. As an application we use a time-dependent dynamical mean-field model to study the formation of stable bright solitons in two-component repulsive Bose-Einstein condensates (BECs) supported by interspecies attraction in a quasi one-dimensional geometry. When all interactions are repulsive, there cannot be bright solitons. However, bright solitons can be formed in two-component repulsive BECs for a sufficiently attractive interspecies interaction, which induces an attractive effective interaction among bosons of same type. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
We present explicit numerical evidence of reflection-positivity violation for the lattice Landau gluon propagator in three-dimensional pure SU(2) gauge theory. We use data obtained at very large lattice volumes (V = 80(3), 140(3)) and for three different lattice couplings in the scaling region (beta = 4.2, 5.0, 6.0). In particular, we observe a clear oscillatory pattern in the real-space propagator C(t). We also verify that the (real-space) data show good scaling in the range t is an element of[0, 3]fm and can be fitted using a Gribov-like form. The violation of positivity is in contradiction with a stable-particle interpretation of the associated field theory and may be viewed as a manifestation of confinement.
Resumo:
We search for anomalous production of heavy-flavor quark jets in association with W bosons at the Fermilab Tevatron p(p) over bar Collider in final states in which the heavy-flavor quark content is enhanced by requiring at least one tagged jet in an event. Jets are tagged using one algorithm based on semileptonic decays of b/c hadrons, and another on their lifetimes. We compare e+jets (164 pb(-1)) and mu+jets (145 pb(-1)) channels collected with the D0 detector at root s = 1.96 TeV to expectations from the standard model and set upper limits on anomalous production of such events.
Resumo:
The effective gluon propagator constructed with the pinch technique is governed by a Schwinger-Dyson equation with special structure and gauge properties, that can be deduced from the correspondence with the background field method. Most importantly the non-perturbative gluon self-energy is transverse order-by-order in the dressed loop expansion, and separately for gluonic and ghost contributions, a property which allows for a meanigfull truncation. A linearized version of the truncated Schwinger-Dyson equation is derived, using a vertex that satisfies the required Ward identity and contains massless poles. The resulting integral equation, subject to a properly regularized constraint, is solved numerically, and the main features of the solutions are briefly discussed.
Resumo:
We present a measurement of the fraction f(+) of right-handed W bosons produced in top quark decays, based on a candidate sample of tt events in the l + jets and dilepton decay channels corresponding to an integrated luminosity of 370 pb(-1) collected by the D0 detector at the Fermilab Tevatron pp Collider at root s = 1.96 TeV. We reconstruct the decay angle theta* for each lepton. By comparing the cos theta* distribution from the data with that for the expected background and signal for various values of f(+) (where we assume that the fraction of longitudinally-polarized W bosons has the standard model value of 0.70), we find f(+) = 0.056 +/- 0.080 (stat) +/- 0.057 (syst) (f(+) < 0.23 at 95% C. L.), consistent with the standard model prediction of f(+) = 3.6 X 10(-4).
Resumo:
lWe report on a search for second generation leptoquarks (LQ(2)) which decay into a muon plus quark in (p) over barp collisions at a center-of-mass energy of root s = 1.96 TeV in the DO detector using an integrated luminosity of about 300 pb(-1). No evidence for a leptoquark signal is observed and an upper bound on the product of the cross section for single leptoquark production times branching fraction into a quark and a muon was determined for second generation scalar leptoquaiks as a function of the leptoquark mass. This result has been combined with a previously published DO search for leptoquark pair production to obtain leptoquark mass limits as a function of the leptoquark-muon-quark coupling, lambda. Assuming lambda = 1, lower limits on the mass of a second generation scalar leptoquark coupling to a u quark and a muon are m(LQ2) > 274 GeV and m(LQ2) > 226 GeV for beta = 1 and beta = 1/2, respectively. (c) 2007 Elsevier B.V. All rights reserved.
Measurement of the top quark mass in the lepton plus jets final state with the matrix element method
Resumo:
We present a measurement of the top quark mass with the matrix element method in the lepton+jets final state. As the energy scale for calorimeter jets represents the dominant source of systematic uncertainty, the matrix element likelihood is extended by an additional parameter, which is defined as a global multiplicative factor applied to the standard energy scale. The top quark mass is obtained from a fit that yields the combined statistical and systematic jet energy scale uncertainty. Using a data set of 0.4 fb(-1) taken with the D0 experiment at Run II of the Fermilab Tevatron Collider, the mass of the top quark is measured using topological information to be: m(top)(center dot+jets)(topo)=169.2(-7.4)(+5.0)(stat+JES)(-1.4)(+1.5)(syst) GeV, and when information about identified b jets is included: m(top)(center dot+jets)(b-tag)=170.3(-4.5)(+4.1)(stat+ JES)(-1.8)(+1.2)(syst) GeV. The measurements yield a jet energy scale consistent with the reference scale.