957 resultados para Progesterone receptors
Resumo:
The role of dopamine and serotonin in spinal pain regulation is well established. However, little is known concerning the role of brain dopamine and serotonin in the perception of pain in humans. The aim of this study was to assess the potential role of brain dopamine and serotonin in determining experimental pain sensitivity in humans using positron emission tomography (PET) and psychophysical methods. A total of 39 healthy subjects participated in the study, and PET imaging was performed to assess brain dopamine D2/D3 and serotonin 5-HT1A receptor availability. In a separate session, sensitivity to pain and touch was assessed with traditional psychophysical methods, allowing the evaluation of potential associations between D2/D3 and 5-HT1A binding and psychophysical responses. The subjects’ responses were also analyzed according to Signal Detection Theory, which enables separate assessment of the subject’s discriminative capacity (sensory factor) and response criterion (non-sensory factor). The study found that the D2/D3 receptor binding in the right putamen was inversely correlated with pain threshold and response criterion. 5-HT1A binding in cingulate cortex, inferior temporal gyrus and medial prefrontal cortex was inversely correlated with discriminative capacity for touch. Additionally, the response criterion for pain and intensity rating of suprathreshold pain were inversely correlated with 5-HT1A binding in multiple brain areas. The results suggest that brain D2/D3 receptors and 5-HT1A receptors modulate sensitivity to pain and that the pain modulatory effects may, at least partly, be attributed to influences on the response criterion. 5-HT1A receptors are also involved in the regulation of touch by having an effect on discriminative capacity.
Resumo:
Indole-based receptors such as biindole, carbazole, and indolocarbazole are regarded as some of the most favorable anion receptors in molecular recognition. This is because indole groups possess N–H groups as hydrogen-bonding donors. The introduction of amide groups in the indole framework can induce strong binding properties and good water solubility. In this study, we designed and synthesized a series of N-(indol-3-ylglyoxylyl)benzylamine derivatives as novel and simple anion receptors. The receptors derived by aryl and aliphatic amines can selectively recognize F– based on a color change from colorless-to-yellow in DMSO. The receptors derived by hydrazine hydrate can recognize F–, AcO–, and H2PO4– by similar color changes in DMSO and can even enable the selective recognition of F– in a DMSO–H2O binary solution by the naked eye. Spectrographic data indicate that complexes are formed between receptors and anions through multiple hydrogen-bonding interactions in dual solutions.
Resumo:
The growth of breast cancer is regulated by hormones and growth factors. Recently, aberrant fibroblast growth factor (FGF) signalling has been strongly implicated in promoting the progression of breast cancer and is thought to have a role in the development of endocrine resistant disease. FGFs mediate their auto- and paracrine signals through binding to FGF receptors 1-4 (FGFR1-4) and their isoforms. Specific targets of FGFs in breast cancer cells and the differential role of FGFRs, however, are poorly described. FGF-8 is expressed at elevated levels in breast cancer, and it has been shown to act as an angiogenic, growth promoting factor in experimental models of breast cancer. Furthermore, it plays an important role in mediating androgen effects in prostate cancer and in some breast cancer cell lines. We aimed to study testosterone (Te) and FGF-8 regulated genes in Shionogi 115 (S115) breast cancer cells, characterise FGF-8 activated intracellular signalling pathways and clarify the role of FGFR1, -2 and -3 in these cells. Thrombospondin-1 (TSP-1), an endogenous inhibitor of angiogenesis, was recognised as a Te and FGF-8 regulated gene. Te repression of TSP-1 was androgen receptor (AR)-dependent. It required de novo protein synthesis, but it was independent of FGF-8 expression. FGF-8, in turn, downregulated TSP-1 transcription by activating the ERK and PI3K pathways, and the effect could be reversed by specific kinase inhibitors. Differential FGFR1-3 action was studied by silencing each receptor by shRNA expression in S115 cells. FGFR1 expression was a prerequisite for the growth of S115 tumours, whereas FGFR2 expression alone was not able to promote tumour growth. High FGFR1 expression led to a growth advantage that was associated with strong ERK activation, increased angiogenesis and reduced apoptosis, and all of these effects could be reversed by an FGFR inhibitor. Taken together, the results of this thesis show that FGF-8 and FGFRs contribute strongly to the regulation of the growth and angiogenesis of experimental breast cancer and support the evidence for FGF-FGFR signalling as one of the major players in breast cancers.
Resumo:
PURPOSE:To compare the prognostic and predictive features between in situ and invasive components of ductal breast carcinomas. METHODS:We selected 146 consecutive breast samples with ductal carcinoma in situ (DCIS) associated with adjacent invasive breast carcinoma (IBC). We evaluated nuclear grade and immunohistochemical expression of estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2), cytokeratin 5/6 (CK5/6), and epidermal growth factor receptor (EGFR) in both components, in situ and invasive, and the Ki-67 percentage of cells in the invasive part. The DCIS and IBC were classified in molecular surrogate types determined by the immunohistochemical profile as luminal (RE/PR-positive/ HER2-negative), triple-positive (RE/RP/HER2-positive), HER2-enriched (ER/PR-negative/HER2-positive), and triple-negative (RE/RP/HER2-negative). Discrimination between luminal A and luminal B was not performed due to statistical purposes. Correlations between the categories in the two groups were made using the Spearman correlation method. RESULTS:There was a significant correlation between nuclear grade (p<0.0001), expression of RE/RP (p<0.0001), overexpression of HER2 (p<0.0001), expression of EGFR (p<0.0001), and molecular profile (p<0.0001) between components in situ and IBC. CK 5/6 showed different distribution in DCIS and IBC, presenting a significant association with the triple-negative phenotype in IBC, but a negative association among DCIS. CONCLUSIONS: Our results suggest that classical prognostic and predictive features of IBC are already determined in the preinvasive stage of the disease. However the role of CK5/6 in invasive carcinoma may be different from the precursor lesions.
Resumo:
The objective of this study was to evaluate the effect of medroxy-progesterone acetate (MAP) with or without estradiol benzoate (EB) on follicular growth during the estrous cycle in cattle. In the first experiment, Hereford cows were synchronized with a synthetic analogue of PGF2 alpha and were treated with two different doses of MAP (250 or 500 mg) with or without EB for 7 days starting on day 8 of the estrous cycle. Follicular growth was inhibited (P<0.05) in all cows except controls and those receiving 250mg MAP without EB. Seventy-five percent of the animals (15/20) showed estrus on days 21 and 22 of the cycle rather than at MAP withdrawal, demonstrating that these treatments did not induce estrus. To determine whether the EB treatment altered endometrial sensitivity to oxytocin and thus the luteolytic cascade, multiparous pre-synchronized cows received 5 mg of EB followed 6 hours later with 50 IU of oxytocin (OT; n=9). Eight hours after EB injection, endometrial fragments were collected from the cows on days 4, 13 and 17 of the estrous cycle and COX-2 gene expression was measured by PCR. EB increased COX-2 mRNA levels only on day 17 of the estrous cycle (P<0.05). In conclusion, MAP alone or associated with EB is able to suppress bovine follicular growth. However, EB in the presence of MAP is not efficient to induce luteolysis in cows when injected on day 8 of the estrous cycle.
Resumo:
We investigated the effects of progesterone and follicle stimulating hormone (FSH) on survival and growth of caprine preantral follicles. Pieces of ovarian tissue were cultured for 1 or 7 days in minimum essential medium (MEM) alone or containing progesterone (1, 2.5, 5, 10 or 20ng/mL), FSH (50ng/mL) or the interaction between progesterone and FSH. Fresh (non-cultured control) and cultured ovarian tissues were processed for histological and ultrastructural studies. After 7 days the addition of FSH to all progesterone concentrations maintained the percentage of normal follicles similar to fresh control. At day 7 of culture, a higher percentage of developing follicles was observed only in 2.5ng/ml of progesterone associated with FSH or 10ng/ml of progesterone alone when compared with control. From day 1 to day 7 of culture, a significant increase in the percentage of developing follicles was observed in MEM and 2.5ng/ml of progesterone + FSH. In addition, after 7 days, in all treatments, there was a significant increase in follicular diameter when compared with control, except for MEM alone and in 5ng/ml of progesterone + FSH or 10ng/ml of progesterone alone. Ultrastructural studies confirmed follicular integrity after 7 days of culture in 2.5ng/ml of progesterone with FSH. In conclusion, this study demonstrated that the interaction between progesterone and FSH maintains ultrastructural integrity, stimulates primordial follicles activation and further growth of cultured caprine preantral follicles.
Resumo:
Coxsackievirus A9 (CV-A9) belongs to human enteroviruses within family Picornaviridae, which are the main cause of aseptic meningitis. In addition, CV-A9 causes a wide range of other clinical manifestations of acute disease including respiratory infections, myocarditis, encephalitis and severe generalized infections in newborns. In this study, the functions of integrins αVβ6 and αVβ3 in the attachment and cellular entry of CV-A9 were analyzed. Further, virus and cell surface interactions and endocytosis of CV-A9 were studied in specific cell lines. Also, a method for production of GFP-expressing CV-A9 particles by long PCR-mediated mutagenesis and in vivo transcription was developed. The results indicated that RGD-motif (arginine-glycine-asparagine) that resides in the viral capsid is important for CV-A9 infection particularly in cell lines expressing integrin αVβ6 and that this integrin serves as a high affinity attachment receptor for the virus. CV-A9 is also capable of infecting certain cell lines independently of αV-integrins by binding to the cell surface HSPA5 protein. Regardless of the attachment stage, the internalization of the virus occurs via the same entry pathway and is dependent on β2M, dynamin, and Arf6 but independent of clathrin and caveolin-1. Furthermore, the virus internalization occurs within Arf6-containing vesicles suggesting that Arf6 is central mediator of CV-A9 endocytosis. While in this study the results of CV-A9 endocytosis were based on microscopical visualization within individual fixed cells, a rapid method for generation of a virus for real-time imaging was also described.
Resumo:
This study evaluated the expression of CD14, toll-like receptor (TLR) 2 and TLR4 on the surface of milk neutrophils in bovine mammary glands infected with Corynebacterium bovis. Here, we used 23 culture-negative control quarters with no abnormal secretion on the strip cup test and milk somatic cell count lower than 1x105 cells/mL, and 14 C. bovis infected quarters. The identification of neutrophils, as well as, the percentage of neutrophils that expressed CD14, TLR2 and TLR4 were analyzed by flow cytometry using monoclonal antibodies. The present study encountered no significant difference in the percentages of milk neutrophils that expressed TLR2 and TLR4 or in the expression of TLR4 by milk neutrophils. Conversely, a lower median fluorescence intensity of TLR2 in milk neutrophils was observed in C. bovis-infected quarters. The percentage of neutrophils that expressed CD14 and the median fluorescence intensity of CD14 in milk neutrophils was also lower in C. bovis-infected quarters.
Resumo:
Morphological and immunohistochemical characterization of angiogenic and apoptotic factors and the expression of thyroid receptors in the ovary of tilapia Oreochromis niloticus in captivity were studied. The morphological evaluation of the ovaries was performed by histological paraffin embedded and stained with HE. The immunohistochemical expressions of CDC47, VEGF, Flk-1, angiopoietin, Tie-2 and thyroid receptor (TRα) were performed by the technique of streptavidein-biotin-peroxidase. Apoptosis was assessed using the TUNEL kit. The relative expression of thyroid hormone receptors (TRα and TRβ) was assessed by RT-PCR real time. The nuclear expression of CDC47 increased with the stage of maturation of the oocyte and was observed in the follicle cells. Apoptotic bodies were observed in the follicular cells of atretic follicles and postovulatory follicles from the ovaries of 150g and 350g fish. Expression of VEGF and its receptor Flk-1 was also observed in the follicular cells, and the expression of both increased with the maturity of the oocyte, with a higher intensity observed in the full-grown follicle. The expression of angiopoietin and of its receptor (Tie 2) was discrete and moderate respectively. TRα expression was independent of follicular development. However, the 350 g tilapia exhibited higher expression of TRβ compared with the 50 g tilapia. We conclude that the proliferative activity and the expression of VEGF and its receptor increase with follicular maturation and that the TRs expression increases with ovarian maturity in tilapia (Oreochromis niloticus).
Resumo:
The fundamental role of N-methyl-D-aspartate (NMDA) receptors in many cortical functions has been firmly defined, as has its involvement in a number of neurological and psychiatric diseases. However, until recently very little was known about the anatomical localization of NMDA receptors in the cerebral cortex of mammals. The recent application of molecular biological techniques to the study of NMDA receptors has provided specific tools which have greatly expanded our understanding of the localization of NMDA receptors in the cerebral cortex. In particular, immunocytochemical studies on the distribution of cortical NMDA receptors have shown that NMDA receptors are preferentially localized on dendritic spines, have disclosed an unknown fraction of presynaptic NMDA receptors on both excitatory and inhibitory axon terminals, and demonstrated that cortical astrocytes do express NMDA receptors. These studies suggest that the effects induced by the activation of NMDA receptors are not due solely to the opening of NMDA channels on neuronal postsynaptic membranes, as previously assumed, but that the activation of presynaptic and glial NMDA receptors may mediate part of these effects
Resumo:
The possible role of histamine receptors in the hippocampal formation on the exploratory motivation and emotionality of the rat was studied. An elevated asymmetric plus-maze composed of 4 different arms (no walls, single high wall, high and low walls and two high walls) arranged at 90o angles was used. The exploration score, considered to be an index of exploratory motivation, and the permanency score, considered to be an index of emotionality (anxiety), were determined. Histamine was administered locally into the ventral hippocampus at three different doses (9, 45 and 90 nmol). Another group of rats was also microinjected with 45 nmol of pyrilamine (a histamine H1 receptor antagonist) or ranitidine (a histamine H2 receptor antagonist) in addition to 9 nmol of histamine in order to identify the possible type of histamine receptor involved. Histamine administration significantly inhibited the exploration score and increased the permanency score at the doses of 9 and 45 nmol in two of four arms. These effects were completely blocked by the administration of either histamine receptor antagonist. The present results suggest that in the hippocampal formation histamine inhibits exploratory motivation and decreases emotionality by activating both types of histamine receptors. Also, the elevated asymmetric plus-maze appears to be a suitable technique to quantify exploration and possibly" anxiety"
Resumo:
Insulin and glucagon are the hormonal polypeptides secreted by the B and A cells of the endocrine pancreas, respectively. Their major physiologic effects are regulation of carbohydrate metabolism, but they have opposite effects. Insulin and glucagon have various physiologic roles, in addition to the regulation of carbohydrate metabolism. The physiologic effects of insulin and glucagon on the cell are initiated by the binding of each hormone to receptors on the target cells. Morphologic studies may be useful for relating biochemical, physiologic, and pharmacologic information on the receptors to an anatomic background. Receptor radioautography techniques using radioligands to label specific insulin and glucagon receptors have been successfully applied to many tissues and organs. In this review, current knowledge of the histologic distribution of insulin and glucagon receptors is presented with a brief description of receptor radioautography techniques
Resumo:
Diethylpropion (DEP) is an amphetamine-like agent used as an anorectic drug. Abuse of DEP has been reported and some restrictions of its use have been recently imposed. The conditioning place preference (CPP) paradigm was used to evaluate the reinforcing properties of DEP in adult male Wistar rats. After initial preferences were determined, animals weighing 250-300 g (N = 7 per group) were conditioned with DEP (10, 15 or 20 mg/kg). Only the dose of 15 mg/kg produced a significant place preference (358 ± 39 vs 565 ± 48 s). Pretreatment with the D1 antagonist SCH 23390 (0.05 mg/kg, sc) 10 min before DEP (15 mg/kg, ip) blocked DEP-induced CPP (418 ± 37 vs 389 ± 31 s) while haloperidol (0.5 mg/kg, ip), a D2 antagonist, 15 min before DEP was ineffective in modifying place conditioning produced by DEP (385 ± 36 vs 536 ± 41 s). These results suggest that dopamine D1 receptors mediate the reinforcing effect of DEP
Resumo:
We have shown that the renin-angiotensin system (RAS) is involved in glucose homeostasis during acute hemorrhage. Since almost all of the physiological actions described for angiotensin II were mediated by AT1 receptors, the present experiments were designed to determine the participation of AT1 receptors in the hyperglycemic action of angiotensin II in freely moving rats. The animals were divided into two experimental groups: 1) animals submitted to intravenous administration of angiotensin II (0.96 nmol/100 g body weight) which caused a rapid increase in plasma glucose reaching the highest values at 5 min after the injection (33% of the initial values, P<0.01), and 2) animals submitted to intravenous administration of DuP-753 (losartan), a non-peptide antagonist of angiotensin II with AT1-receptor type specificity (1.63 µmol/100 g body weight as a bolus, iv, plus a 30-min infusion of 0.018 µmol 100 g body weight-1 min-1 before the injection of angiotensin II), which completely blocked the hyperglycemic response to angiotensin II (P<0.01). This inhibitory effect on glycemia was already demonstrable 5 min (8.9 ± 0.28 mM, angiotensin II, N = 9 vs 6.4 ± 0.22 mM, losartan plus angiotensin II, N = 11) after angiotensin II injection and persisted throughout the 30-min experiment. Controls were treated with the same volume of saline solution (0.15 M NaCl). These data demonstrate that the angiotensin II receptors involved in the direct and indirect hyperglycemic actions of angiotensin II are mainly of the AT1-type.
Resumo:
This paper reviews the use of confocal microscopy as it pertains to the identification of G-protein coupled receptors and the study of their dynamic properties in cell cultures and in mammalian brain following their tagging with specific fluorescent ligands. Principles that should guide the choice of suitable ligands and fluorophores are discussed. Examples are provided from the work carried out in the authors' laboratory using custom synthetized fluoresceinylated or BODIPY-tagged bioactive peptides. The results show that confocal microscopic detection of specifically bound fluorescent ligands permits high resolution appraisal of neuropeptide receptor distribution both in cell culture and in brain sections. Within the framework of time course experiments, it also allows for a dynamic assessment of the internalization and subsequent intracellular trafficking of bound fluorescent molecules. Thus, it was found that neurotensin, somatostatin and mu- and delta-selective opioid peptides are internalized in a receptor-dependent fashion and according to receptor-specific patterns into their target cells. In the case of neurotensin, this internalization process was found to be clathrin-mediated, to proceed through classical endosomal pathways and, in neurons, to result in a mobilization of newly formed endosomes from neural processes to nerve cell bodies and from the periphery of cell bodies towards the perinuclear zone. These mechanisms are likely to play an important role for ligand inactivation, receptor regulation and perhaps also transmembrane signaling.