911 resultados para Production of the space
Resumo:
On line isotope separation techniques (ISOL) for production of ion beams of short-lived radionuclides require fast separation of nuclear reaction products from irradiated target materials followed by a transfer into an ion source. As a first step in this transport chain the release of nuclear reaction products from refractory metals has been studied systematically and will be reviewed. High-energy protons (500 - 1000 MeV) produce a large number of radionuclides in irradiated materials via the nuclear reactions spallation, fission and fragmentation. Foils and powders of Re, W, Ta, Hf, Mo, Nb, Zr, Y, Ti and C were irradiated with protons (600 - 1000 MeV) at the Dubna synchrocyclotron, the CERN synchrocyclotron and at the CERN PS-booster to produce different nuclear reaction products. The main topic of the paper is the determination of diffusion coefficients of the nuclear reaction products in the target matrix, data evaluation and a systematic interpretation of the data. The influence of the ionic radius of the diffusing species and the lattice type of the host material used as matrix or target on the diffusion will be evaluated from these systematics. Special attention was directed to the release of group I, II and III-elements. Arrhenius plots lead to activation energies of the diffusion process.
Resumo:
Aim: To develop a new medium for enhanced production of biomass of an aquaculture probiotic Pseudomonas MCCB 103 and its antagonistic phenazine compound, pyocyanin. Methods and Results: Carbon and nitrogen sources and growth factors, such as amino acids and vitamins, were screened initially in a mineral medium for the biomass and antagonistic compound of Pseudomonas MCCB 103. The selected ingredients were further optimized using a full-factorial central composite design of the response surface methodology. The medium optimized as per the model for biomass contained mannitol (20 g l)1), glycerol (20 g l)1), sodium chloride (5 g l)1), urea (3Æ3 g l)1) and mineral salts solution (20 ml l)1), and the one optimized for the antagonistic compound contained mannitol (2 g l)1), glycerol (20 g l)1), sodium chloride (5Æ1 g l)1), urea (3Æ6 g l)1) and mineral salts solution (20 ml l)1). Subsequently, the model was validated experimentally with a biomass increase by 19% and fivefold increase of the antagonistic compound. Conclusion: Significant increase in the biomass and antagonistic compound production could be obtained in the new media. Significance and Impact of the Study: Media formulation and optimization are the primary steps involved in bioprocess technology, an attempt not made so far in the production of aquaculture probiotics.
Resumo:
School of Industrial Fisheries, Cochin University of Science and Technology
Resumo:
Controlling the inorganic nitrogen by manipulating carbon / nitrogen ratio is a method gaining importance in aquaculture systems. Nitrogen control is induced by feeding bacteria with carbohydrates and through the subsequent uptake of nitrogen from the water for the synthesis of microbial proteins. The relationship between addition of carbohydrates, reduction of ammonium and the production of microbial protein depends on the microbial conversion coefficient. The carbon / nitrogen ratio in the microbial biomass is related to the carbon contents of the added material. The addition of carbonaceous substrate was found to reduce inorganic nitrogen in shrimp culture ponds and the resultant microbial proteins are taken up by shrimps. Thus, part of the feed protein is replaced and feeding costs are reduced in culture systems.The use of various locally available substrates for periphyton based aquaculture practices increases production and profitability .However, these techniques for extensive shrimp farming have not so far been evaluated. Moreover, an evaluation of artificial substrates together with carbohydrate source based farming system in reducing inorganic nitrogen production in culture systems has not yet been carried-out. Furthermore, variations in water and soil quality, periphyton production and shrimp production of the whole system have also not been determined so-far.This thesis starts with a general introduction , a brief review of the most relevant literature, results of various experiments and concludes with a summary (Chapter — 9). The chapters are organised conforming to the objectives of the present study. The major objectives of this thesis are, to improve the sustainability of shrimp farming by carbohydrate addition and periphyton substrate based shrimp production and to improve the nutrient utilisation in aquaculture systems.
Resumo:
The present study is aimed at observing the variations, in space and time, of see of the important hydrographic parameters such as sea water temperature, salinity and Resolved oxygen within the coastal waters along the south-west coast of Indiametween Ratnagiri (17°OO*N,73°20'E) and cape comorin ( 8°10'N,77°30*E). Specific data relating to the process of upwelling and sinking was collected mainly to evaluate the extent and intensity of the vertical mixing processes active in the area under study. The study also attempted possible correlations between the observed parameters and the occurrence and migrations of some of the major pelagic fishery resources such as sardine,mackerel and anchovy in the area under study
Resumo:
The Arabian Sea and the Bay of Bengal are both highly dynamic ecosystems, due to the seasonally reversing monsoon winds, but the processes affecting the mesozooplankton community remain poorly understood. These are important basins exhibiting enhanced biological production as a result of upwelling, winter cooling and other episodic events such as eddies and gyres. Zooplankters are primarily the prey for almost all fish larvae. Seasonal changes in the biogeochemical processes can strongly affect zooplankton density and distribution, which in turn, strongly affect the larval growth, and consequently, the pelagic fish recruitment. It is clear that plankton biomass and biogeochemical fluxes are not in steady state. Acoustic data on mesozooplankton abundance suggests that they also exist in the mesopelagic zone. Earlier studies were confined only to the upper 200 m and hence the structure of mesozooplankton community in the deeper layers was not well known. Copepods are the dominant mesoplankton group, and therefore the majority of the studies were focused on them. The planktonic ostracods are the second major crustacean group and at times, their swarms can outnumber all other planktonic groups. The understanding of the community structure of the ostracods is essential to establish their role in the marine food web. Mesozooplankton is responsible for the vertical flux of organic matter produced by phytoplankton and is assumed to be equivalent to new production (Eppley & Peterson, 1979). Since the fate of newly produced organic matter depends upon their consumers, the zooplankton biomass must be estimated in size fractions or taxonomic components to understand the vertical flux of organic carbon. It is thus important to update our knowledge on different groups of zooplankton on the basis of seasonal and temporal distribution. The distribution in space and time is essential for modeling the carbon cycling that structure the marine ecosystems
Resumo:
Existing method of culture were largely based on empirical knowledge. Lacking a scientific basis as such methods did, they were often wasteful and suffered severe limitation. Modern methods of fish and prawn culture based on scientific research, have revolutioned the industry in recent years and not only extended its scope to cover the whole country but led to increased fish and prawn production. An understanding of the biological capability of the water in the perennial and seasonal culture ponds, and the nature and extent of the influence of the abiotic factors on the production of organisms in the primary level of food chain would contribute to effectively implement management measures in the stocking strategies and in the evaluation of economics of production of prawns. It is against this background that the present topic of investigation "Studies on the ecology and production of algae in prawn culture systems” was selected.
Resumo:
Aim: To develop a new medium for enhanced production of biomass of an aquaculture probiotic Pseudomonas MCCB 103 and its antagonistic phenazine compound, pyocyanin. Methods and Results: Carbon and nitrogen sources and growth factors, such as amino acids and vitamins, were screened initially in a mineral medium for the biomass and antagonistic compound of Pseudomonas MCCB 103. The selected ingredients were further optimized using a full-factorial central composite design of the response surface methodology. The medium optimized as per the model for biomass contained mannitol (20 g l)1), glycerol (20 g l)1), sodium chloride (5 g l)1), urea (3Æ3 g l)1) and mineral salts solution (20 ml l)1), and the one optimized for the antagonistic compound contained mannitol (2 g l)1), glycerol (20 g l)1), sodium chloride (5Æ1 g l)1), urea (3Æ6 g l)1) and mineral salts solution (20 ml l)1). Subsequently, the model was validated experimentally with a biomass increase by 19% and fivefold increase of the antagonistic compound. Conclusion: Significant increase in the biomass and antagonistic compound production could be obtained in the new media. Significance and Impact of the Study: Media formulation and optimization are the primary steps involved in bioprocess technology, an attempt not made so far in the production of aquaculture probiotics
Resumo:
A marine isolate of jáÅêçÅçÅÅìë MCCB 104 has been identified as an aquaculture probiotic antagonistic to sáÄêáç. In the present study different carbon and nitrogen sources and growth factors in a mineral base medium were optimized for enhanced biomass production and antagonistic activity against the target pathogen, sáÄêáç=Ü~êîÉóá, following response surface methodology (RSM). Accordingly the minimum and maximum limits of the selected variables were determined and a set of fifty experiments programmed employing central composite design (CCD) of RSM for the final optimization. The response surface plots of biomass showed similar pattern with that of antagonistic activity, which indicated a strong correlation between the biomass and antagonism. The optimum concentration of the carbon sources, nitrogen sources, and growth factors for both biomass and antagonistic activity were glucose (17.4 g/L), lactose (17 g/L), sodium chloride (16.9 g/L), ammonium chloride (3.3 g/L), and mineral salts solution (18.3 mL/L). © KSBB
Resumo:
Two distinct nitrifying bacterial consortia, namely an ammonia oxidizing non-penaeid culture (AMO NPCU-1) and an ammonia oxidizing penaeid culture (AMOPCU-1), have been mass produced in a nitrifying bacterial consortia production unit (NBCPU). The consortia, maintained at 4 C were activated and cultured in a 2 l fermentor initially. At this stage the net biomass (0.105 and 0.112 g/l), maximum specific growth rate (0.112 and 0.105/h) and yield coefficients (1.315 and 2.08) were calculated respectively, for AMONPCU-1 and AMOPCU-1 on attaining stationary growth phase. Subsequently on mass production in a 200 l NBCPU under optimized culture conditions, the total amounts of NH4 ?–N removed by AMONPCU-1 and AMOPCU-1 were 1.948 and 1.242 g/l within 160 and 270 days, respectively. Total alkalinity reduction of 11.7–14.4 and 7.5–9.1 g/l were observed which led to the consumption of 78 and 62 g Na2CO3. The yield coefficient and biomass of AMONPCU-1 were 0.67 and 125.3 g/l and those of AMOPCU-1 were 1.23 and 165 g/l. The higher yield coefficient and growth rate of AMOPCU-1 suggest better energy conversion efficiency and higher CO2 fixation potential. Both of the consortia were dominated by Nitrosomonas-like organisms. The consortia may find application in the establishment of nitrification within marine and brackish water culture systems.
Squeezed Coherent State Representation of Scalar Field and Particle Production in the Early Universe
Resumo:
The present work is an attempt to explain particle production in the early univese. We argue that nonzero values of the stress-energy tensor evaluated in squeezed vacuum state can be due to particle production and this supports the concept of particle production from zero-point quantum fluctuations. In the present calculation we use the squeezed coherent state introduced by Fan and Xiao [7]. The vacuum expectation values of stressenergy tensor defined prior to any dynamics in the background gravitational field give all information about particle production. Squeezing of the vacuum is achieved by means of the background gravitational field, which plays the role of a parametric amplifier [8]. The present calculation shows that the vacuum expectation value of the energy density and pressure contain terms in addition to the classical zero-point energy terms. The calculation of the particle production probability shows that the probability increases as the squeezing parameter increases, reaches a maximum value, and then decreases.
Squeezed Coherent State Representation of Scalar Field and Particle Production in the Early Universe
Resumo:
The present work is an attempt to explain particle production in the early univese. We argue that nonzero values of the stress-energy tensor evaluated in squeezed vacuum state can be due to particle production and this supports the concept of particle production from zero-point quantum fluctuations. In the present calculation we use the squeezed coherent state introduced by Fan and Xiao [7]. The vacuum expectation values of stressenergy tensor defined prior to any dynamics in the background gravitational field give all information about particle production. Squeezing of the vacuum is achieved by means of the background gravitational field, which plays the role of a parametric amplifier [8]. The present calculation shows that the vacuum expectation value of the energy density and pressure contain terms in addition to the classical zero-point energy terms. The calculation of the particle production probability shows that the probability increases as the squeezing parameter increases, reaches a maximum value, and then decreases.
Resumo:
Prawn waste, a chitinous solid waste of the shell®sh processing industry, was used as a substrate for chitinase production by the marine fungus Beauveria bassiana BTMF S10, in a solid state fermentation (SSF) culture. The process parameters in¯uencing SSF were optimized. A maximum chitinase yield of 248.0 units/g initial dry substrate (U/gIDS) was obtained in a medium containing a 5:1 ratio (w/v) of prawn waste/sea water, 1% (w/w) NaCl, 2.5% (w/w) KH2PO4, 425±600 lm substrate particle size at 27 °C, initial pH 9.5, and after 5 days of incubation. The presence of yeast extract reduced chitinase yield. The results indicate scope for the utilization of shell®sh processing (prawn) waste for the industrial production of chitinase by using solid state fermentation.