949 resultados para Production Management
Resumo:
ABSTRACT This work aimed to evaluate the consequences of the monthly extraction of immature leaves in survival, leaf production and reproductive performance ofCopernicia prunifera H. E. Moore palm, popularly known as carnaúba. One hundred sixty reproductive adult palms were monitored for 17 months in four extractive communities located at the coast of the state of Piauí. As a result, it was observed that leaves, flowers, fruits and seeds production were reduced in the palm submitted to 50% or 75% monthly extraction. Higher levels of extraction were followed by smaller levels in seed germination. No deaths were observed even in the group subjected to 75% monthly leaves exploration. In order not to produce damage to palm trees development it is suggested that leaf extraction rate should not exceed 25% monthly as well as pausing of extractive activity preferentially during fruit maturation.
Resumo:
The experiment was performed in the experimental area of the Engineering Department Federal University of Lavras, Minas Gerais State, Brazil. It aimed at identifying the adequate irrigation management of the greenhouse-cultivated Japanese cucumber (Cucumis sativus L.). complete randomized design, with four levels of soil water potential (15; 30; 60 e 120 kPa) at two phenological phases (vegetative and reproductive), and 5 replications. Overall, the results showed decrease of yield according to increase of soil water potentials. During the reproductive stage, Japanese cucumber plants were more sensitive to water deficit, resulting in further decrease in yield compared to applied water deficit during the vegetative stage of the culture.
Resumo:
As the requirement for agriculture to be environmentally suitable there is a necessity to adopt indicators and methodologies approaching sustainability. In Brazil, biodiesel addition into diesel is mandatory and soybean oil is its main source. The material embodiment determines the convergence of inputs into the crop. Moreover, the material flows are necessary for any environmental analysis. This study evaluated distinct production scenarios, and also conventional versus GMO crops, through the material embodiment and energy analysis. GMO crops demanded less indirectly applied inputs. The energy balance showed linearity with yield, whereas for EROI, the increases in input and yield were not affected.
Resumo:
The objective of this study was to evaluate the effects of the nitrogen fertilization in the form of swine deep bed in the properties of a quartz-sand neosol. The organic compound used was the deep bed made with rice hulls, from a commercial swine finishing system farm. Deep bed samples have been collected at various points in the installation in order to obtain a representative composite sample which has been fractionated in a 2.0 mm sieve and submitted to a 50-day maturation period. Then, agronomic value analyses were done. The experimental design was completely randomized. The treatments consisted of 0; 75; 150 and 300 mg dm-3 of N doses of deep bed as well as an additional treatment with ammonium sulfate at a 150 mg dm-3 of N. The experimental period in the greenhouse was 45 days, where the soil was cultivated with maize. After the experiment completion, further soil properties analyses were done. From the results, it was noted that the organic fertilization with deep bed provided a significant increase in the levels of potassium, in the sum of the bases, in the effective CEC, in the CEC at pH 7.0 and in the percentage of saturation.
Resumo:
The study evaluated the energy performance of pig farming integrated with maize production in mechanized no-tillage system. In this proposed conception of integration, the swine excrement is used as fertilizers in the maize crop. The system was designed involving the activities associated to the pig management and maize production (soil management, cultivation and harvest). A one-year period of analysis was considered, enabling the production of three batches of pigs and two crops of maize. To evaluate the energy performance, three indicators were created: energy efficiency, use of non-renewable resources efficiency and cost of non-renewable energy to produce protein. The energy inputs are composed by the inputs and infrastructure used by the breeding of pigs and maize production, as well as the solar energy incident on the agroecosystem. The energy outputs are represented by the products (finished pigs and maize). The results obtained in the simulation indicates that the integration improves the energy performance of pig farms, with an increase in the energy efficiency (186%) as well as in the use of the non-renewable energy resources efficiency (352%), while reducing the cost of non-renewable energy to produce protein (‑58%).
Resumo:
The aim of this work was to evaluate the energy flows of a commercial production system of swine deep bed in its finishing phase, located in Juiz de Fora, in the State of Minas Gerais, Brazil. Thus, an energy efficiency study was carried out by monitoring a lot of animals, during a 94-day period. The energy rate of each compound involved in the production process was quantified and the matrixes of energy consumption were determined in the form of animal feeding, electrical energy, piglets, material used as deep bed, human labor, equipment, swine buildings, production of alive swine for slaughter, organic fertilizer production (swine deep bed or swine deep litter). From the direct input energy, 80.57% correspond to animal feeding, 11.90% to pigs for slaughter and 6.76% to piglets, while from the energy output 53.45% correspond to the terminating swine and 46.55% to organic fertilizer (swine deep bed). By the results obtained, we can conclude that such production system has corresponded to an industrial and highly specialized agro ecosystem, importing a great part of the energy consumed in the production process, with 41% of energy efficiency.
Resumo:
It was evaluated the effect of irrigation management on the production characteristics of coffee cultivar Acaiá MG-1474, planted in spacing of 3.00 m x 0.60 m, pruned in 2004, and irrigated by drip since the planting, in 1997. The experimental designed used was of randomized blocks with five treatments and four replications. The treatments consisted of irrigation management strategies, applying or not applying controlled moisture deficit in layer of 0 to 0.4m, in dry seasons of the year: A = no irrigation (control), B = irrigation during all year considering the factor of water availability in the soil (f) equal to 0.75, C = irrigation during all year considering f = 0.25, D = irrigation during all year, but in January /February /March /July /October /November /December with f = 0.25 and April /May /June /August /September with f = 0.75, E = irrigation only during April /May /June /August /September with f = 0.25. From July /2005 to June /2007 the applied water depth was defined based on Class A pan evaporation (ECA) and the period from July/2007 to June/2008 based on readings of matric potential of soil obtained from Watermark® sensors. Each plot consisted of three rows with ten plants per row, considering as useful plot five plants of center line. The results indicated that the E irrigation management was the most suitable for technical reasons.
Resumo:
The proper management of agricultural crop residues could produce benefits in a warmer, more drought-prone world. Field experiments were conducted in sugarcane production areas in the Southern Brazil to assess the influence of crop residues on the soil surface in short-term CO2 emissions. The study was carried out over a period of 50 days after establishing 6 plots with and without crop residues applied to the soil surface. The effects of sugarcane residues on CO2 emissions were immediate; the emissions from residue-covered plots with equivalent densities of 3 (D50) and 6 (D100) t ha-1 (dry mass) were less than those from non-covered plots (D0). Additionally, the covered fields had lower soil temperatures and higher soil moisture for most of the studied days, especially during the periods of drought. Total emissions were as high as 553.62 ± 47.20 g CO2 m-2, and as low as 384.69 ± 31.69 g CO2 m-2 in non-covered (D0) and covered plot with an equivalent density of 3 t ha-1 (D50), respectively. Our results indicate a significant reduction in CO2 emissions, indicating conservation of soil carbon over the short-term period following the application of sugarcane residues to the soil surface.
Resumo:
The goal of this study was to evaluate the nitrogen fertilization as deep litter for pigs in order to produce biomass and accumulate nutrients by the corn. A deep litter made of rice husk as organic compound, from a commercial pig farm during finishing phase, was used. After three consecutive batches of pigs, the deep litter was subjected to a maturation period of 50 days, and samples of this material were taken for analysis of agronomic value. The experimental design was completely randomized with five replicates. The treatments consisted of doses of 0, 75, 150 and 300mg dm-3 of N of deep litter, as well as an additional treatment with ammonium sulfate, with a dosage of 150mg dm-3 of N. After 45 days, corn plants were harvested in order to evaluate the total dry weight and nutrient concentrations of their aerial parts. Dry matter increases were found with more application of deep litter. Regarding control fertilization, the use of increasing dosages of deep litter allowed accumulation of K, reduced the availability of P, Ca, Mg, Zn and B and did not alter the concentrations of N, Cu, Fe and Mn.
Resumo:
The evaluation of technologies employed at the agricultural production system such as crop rotation and soil preparation, both associated with crop-livestock integration, is crucial. Therefore, the aim of the present study was to evaluate the incorporation of lime for three no-tillage systems and cultural managements in system of crop-livestock integration, with emphasis on corn grain yield. The experiment was conducted from January 2003 to April 2005 at Selvíria city, MS, in Dystroferric Red Latosol, clay texture. The experimental design was randomized blocks with split plots consisted of three main treatments, aimed the soil physics conditioning and the incorporation of lime: PD - No-no-tillage; CM - minimum no-tillage, and PC - conventional no-tillage; and of two secondary treatments related to the management: rotation and crop succession, with four replications. Data on agronomic traits of maize were analyzed: plant height, stem diameter, height of the first spike insertion, 100 grains weight and grain yield. The results showed that the maize produced under the system of crop-livestock integration is quite feasible, showing that grain yields are comparable to averages in the region and the different soil physical conditioning and incorporation of lime did not influence the corn yield as well as the cultural managements, rotation and succession, did not affect the maize crop behavior after two years of cultivation.
Resumo:
It was to aimed it to investigate effects of various saline water use strategies on melon production and quality of two cultivars (Cucumis melo L., Sancho - C1 and Medellín - C2. The plants were irrigated with water of low (S1 = 0.61 dS m-1) and high (S2 = 4.78 dS m-1) salinity levels, during each crop stage: S1S1S2S2 - T1; S2S1S2S2 - T2; S2S2S1S2 - T3. The 1st, 2nd, 3rd and 4th terms of these sequences correspond to initial growth, flowering, fruit ripening and harvest phenological stages, respectively. Additionally, there was irrigation rotation during all cycle, with water S1 during two days followed by S2 for one day (S1 2 dias + S2 1 dia - T4) and irrigation with non-salt water S2 during all cycle - T5. Moreover, we used as control, the irrigation water at 3.2 dS m-1 resulting from water mixture of S1 and S2 - T6 (farm used irrigation management). The experiment was carried out in Pedra Preta Farm, in Mossoró, RN, using an entire randomized block statistical design in a 6x2 subdivided plot scheme with four replications. Saline water irrigation at initial growth stage reduces leaf area and shoot dry phytomass of Sancho and Medellín melon cultivars. The irrigation by T4 provided the highest phytomass production of fruits at 48 DAS, reducing in 33% of good quality water in irrigation.
Resumo:
Citrus orchards are very important in Brazil, especially in São Paulo State, where occupy an area of 600,000 ha approximately. To identify sustainability degree of citrus production system, an energy analysis allows evaluating efficiency of direct and indirect applied inputs. Thus, this study aimed to evaluate citrus production system under energetic point of view, in which invested energy is paid back with citrus production; being compared within three scenarios for operational field efficiency. As result, by sensitivity analysis was determined that fuel was the main energy demander, followed by pesticides and fertilizers. In operational work capacity analysis, all combinations between efficiency (minimum, typical and maximum) and yield levels became positive in the seventh year, except for the combination minimum efficiency and 10 % less yield, positive in the eighth year. The best combination (maximum efficiency and 10 % more yield) has promoted investment payoff around the sixth and seventh year. By this study, it is possible to determine the total energy demand to produce citrus and indentify the applied inputs that need more attention by the decision-makers. Labor and seedlings can be ommited for further studies with citrus, since they were irrelevant. Management of agricultural machinery may pose an important role on decreasing environmental impact of citrus production.
Resumo:
The current study intended to determine the optimum water depth, yield and evapotranspiration (ETc) for bean cultivars. The experiment was conducted in the Campus of Unit I of the Triângulo Mineiro Federal Education and Technology Institute in Uberaba, MG, in a completely randomized design with three replications. The treatments consisted of four water-replacing levels in the soil (70, 100, 130 and 160% of the crop evapotranspiration) and four bean cultivars (Pérola, BRSMG Madrepérola, BRSMG Majestoso and IAC Alvorada). The average values of ETc obtained for soil water balance for the cultivars Pérola, BRSMG Madrepérola, BRSMG Majestoso and IAC Alvorada were, respectively, of 5.25 mm day-1, 4.59 mm day-1, 4.54 mm day-1 and 4.77 mm day-1. The water depths which provided the highest yields were for the cultivars Pérola, BRSMG Madrepérola, BRSMG Majestoso and IAC Alvorada of 451.61 mm, 454.41 mm, 504.71 mm and 344.30 mm, respectively. The maximum yields found were 4597.87 kg ha-1 (Pérola), 4546.27 kg ha-1 (BRSMG Madrepérola), 4253.39 kg ha-1 (BRSMG Majestoso) and 3958.50kg ha-1 (IAC Alvorada).
Resumo:
Precision agriculture based on the physical and chemical properties of soil requires dense sampling to determine the spatial variability of these properties. This dense sampling is often expensive and time-consuming. One technique used to reduce sample numbers involves defining management zones based on information collected in the field. Some researchers have demonstrated the importance of soil electrical variables in defining management zones. The objective of this study was to evaluate the relationship between the spatial variability of the apparent electrical conductivity and the soil properties in the coffee production of mountain regions. Spatial variability maps were generated using a geostatistical method. Based on the spatial variability results, a correlation analysis, using bivariate Moran's index, was done to evaluate the relationship between the apparent electrical conductivity and soil properties. The maps of potassium (K) and remaining phosphorus (P-rem) were the closest to the spatial variability pattern of the apparent electrical conductivity.
Resumo:
Precision irrigation seeks to establish strategies which achieve an efficient ratio between the volume of water used (reduction in input) and the productivity obtained (increase in production). There are several studies in the literature on strategies for achieving this efficiency, such as those dealing with the method of volumetric water balance (VWB). However, it is also of great practical and economic interest to set up versatile implementations of irrigation strategies that: (i) maintain the performance obtained with other implementations, (ii) rely on few computational resources, (iii) adapt well to field conditions, and (iv) allow easy modification of the irrigation strategy. In this study, such characteristics are achieved when using an Artificial Neural Network (ANN) to determine the period of irrigation for a watermelon crop in the Irrigation Perimeter of the Lower Acaraú, in the state of Ceará, Brazil. The Volumetric Water Balance was taken as the standard for comparing the management carried out with the proposed implementation of ANN. The statistical analysis demonstrates the effectiveness of the proposed management, which is able to replace VWB as a strategy in automation.