875 resultados para Probability of choice
Resumo:
Restoration of water-bodies from eutrophication has proved to be extremely difficult. Mathematical models have been used extensively to provide guidance for management decisions. The aim of this paper is to elucidate important problems of using models for predicting environmental changes. First, the necessity for a proper uncertainty assessment of the model, upon calibration, has not been widely recognized. Predictions must not be a single time trajectory; they should be a band, expressing system uncertainty and natural variability. Availability of this information may alter the decision to be taken. Second, even with well-calibrated models, there is no guarantee they will give correct projections in situations where the model is used to predict the effects of measures designed to bring the system into an entirely different ”operating point”, as is typically the case in eutrophication abatement. The concept of educated speculation is introduced to partially overcome this difficulty. Lake Veluwe is used as a case to illustrate the point. Third, as questions become more detailed, such as ”what about expected algal composition”, there is a greater probability of running into fundamental problems that are associated with predicting the behaviour of complex non-linear systems. Some of these systems show extreme initial condition sensitivity and even, perhaps, chaotic behaviour, and are therefore fundamentally unpredictable.
Resumo:
Hatchling American Alligators (Alligator mississippiensis) produced from artificially incubated wild eggs were returned to their natal areas (repatriated). We compared artificially incubated and repatriated hatchlings released within and outside the maternal alligator’s home range with naturally incubated hatchlings captured and released within the maternal alligator’s home range on Lake Apopka, Lake Griffin, and Orange Lake in Florida. We used probability of recapture and total length at approximately nine months after hatching as indices of survival and growth rates. Artificially incubated hatchlings released outside of the maternal alligator’s home range had lower recapture probabilities than either naturally incubated hatchlings or artificially incubated hatchlings released near the original nest site. Recapture probabilities of other treatments did not differ significantly. Artificially incubated hatchlings were approximately 6% shorter than naturally incubated hatchlings at approximately nine months after hatching. We concluded that repatriation of hatchlings probably would not have long-term effects on populations because of the resiliency of alligator populations to alterations of early age-class survival and growth rates of the magnitude that we observed. Repatriation of hatchlings may be an economical alternative to repatriation of older juveniles for population restoration. However, the location of release may affect subsequent survival and growth.
Resumo:
This chapter studies multilingual democratic societies with highly developed economies. These societies are assumed to have two languages with official status: language A, spoken by every individual, and language B, spoken by the bilingual minority. We emphasize that language rights are important, but the survival of the minority language B depends mainly on the actual use bilinguals make of B. The purpose of the present chapter is to study some of the factors affecting the bilingual speakers language choice behaviour. Our view is that languages with their speech communities compete for speakers just as fi rms compete for market share. Thus, the con ict among the minority languages in these societies does not take the rough expressions such as those studied in Desmet et al. (2012). Here the con flict is more subtle. We model highly plausible language choice situations by means of choice procedures and non-cooperative games, each with different types of information. We then study the determinants of the bilinguals ' strategic behaviour with regard to language. We observe that the bilinguals' use of B is shaped, essentially, by linguistic conventions and social norms that are developed in situations of language contact.
Resumo:
The angling season for non-migratory brown trout, in the Environment Agency (EA) North West Region, runs from March 15th to September 30th. Each year, large numbers of farm reared brown trout are stocked into the rivers of the North West Region's Central Area. In 1994, approximately 20,000 brown trout were introduced into the River systems of the Lune, Wyre and Ribble by local angling clubs and fishery owners. Most of these fish were stocked at a length greater than that defined by local byelaws as the takeable size (200mm). Introductions are made to supplement the existing wild brown trout populations within the river and increase the probability of an angler catching a fish. Stocking with fish of a sufficient length allows the successful angler to remove the catch for their own use. In this way, stretches of the rivers are effectively managed as "put and take" fisheries for brown trout. A number of brown trout fingerlings are also introduced each year by angling clubs and fishery owners. These are stocked with the expectation that the fish will survive in the river to grow, over-winter, and eventually attain a takable size with an increased degree of "wildness". The lower cost of fingerlings, as opposed to trout of a takable length, makes their introduction more attractive to angling clubs since a greater number can be stocked for a given cost. Although the practise of stocking brown trout has occurred for many years in the Central Area, there is little information of its success in terms of increasing anglers catches, or the survival offish introduced. This study was initiated to determine the recapture rates by angling of brown trout following their introduction into a river fishery. The information gained from this study can then be used to give guidance to angling clubs and fishery owners on the optimal strategies for stocking fish.
Resumo:
We modeled the probability of capturing Pacif ic mackerel (Scomber japonicus) larvae as a function of environmental variables for the Southern California Bight (SCB) most years from 1951 through 2008 and Mexican waters offshore of Baja California from 1951 through 1984. The model exhibited acceptable fit, as indicated by the area under a receiver-operating-characteristic curve of 0.80 but was inconsistent with the zero catches that occurred frequently in the 2000s. Two types of spawners overlapped spatially within the survey area: those that exhibited peak spawning during April in the SCB at about 15.5°C and a smaller group that exhibited peak spawning in August near Punta Eugenia, Mexico, at 20°C or greater. The SCB generally had greater zooplankton than Mexican waters but less appropriate (lower) geostrophic f lows. Mexican waters generally exhibited greater predicted habitat quality than the SCB in cold years. Predicted quality of the habitat in the SCB was greater from the 1980s to 2008 than in the earlier years of the survey primarily because temperatures and geostrophic flows were more appropriate for larvae. However, stock size the previous year had a larger effect on predictions than any environmental variable, indicating that larval Pacific mackerel did not fully occupy the suitable habitat during most years.
Resumo:
Estimating the abundance of cetaceans from aerial survey data requires careful attention to survey design and analysis. Once an aerial observer perceives a marine mammal or group of marine mammals, he or she has only a few seconds to identify and enumerate the individuals sighted, as well as to determine the distance to the sighting and record this information. In line-transect survey analyses, it is assumed that the observer has correctly identified and enumerated the group or individual. We describe methods used to test this assumption and how survey data should be adjusted to account for observer errors. Harbor porpoises (Phocoena phocoena) were censused during aerial surveys in the summer of 1997 in Southeast Alaska (9844 km survey effort), in the summer of 1998 in the Gulf of Alaska (10,127 km), and in the summer of 1999 in the Bering Sea (7849 km). Sightings of harbor porpoise during a beluga whale (Phocoena phocoena) survey in 1998 (1355 km) provided data on harbor porpoise abundance in Cook Inlet for the Gulf of Alaska stock. Sightings by primary observers at side windows were compared to an independent observer at a belly window to estimate the probability of misidentification, underestimation of group size, and the probability that porpoise on the surface at the trackline were missed (perception bias, g(0)). There were 129, 96, and 201 sightings of harbor porpoises in the three stock areas, respectively. Both g(0) and effective strip width (the realized width of the survey track) depended on survey year, and g(0) also depended on the visibility reported by observers. Harbor porpoise abundance in 1997–99 was estimated at 11,146 animals for the Southeast Alaska stock, 31,046 animals for the Gulf of Alaska stock, and 48,515 animals for the Bering Sea stock.
Resumo:
Measurements of 18O/16O and 13C/12C ratios in the carbonate of juvenile gray snapper (Lutjanus griseus) sagittal otoliths collected during 2001–2005 from different southern Florida regions indicated significant variations in the ratios between Florida Bay and surrounding areas. Annual differences in isotopic composition were also observed. Classification accuracy of individual otoliths to a region averaged 80% (63% to 96%), thereby enabling the probability of assigning an unknown individual to the appropriate juvenile nursery habitat. Identification of isotopic signatures in the otoliths of gray snapper from Florida Bay and adjacent ecosystems may be important for distinguishing specific portions of the bay that are crucial nursery grounds for juveniles. Separation of gray snapper between geographic regions and nursery sites is possible and has the potential to establish a link between adult gray snapper present on offshore reefs and larvae and juveniles at nursery habitats in Florida Bay or adjacent areas.
Resumo:
Catch rates from surveys are used as indices of abundance for many fish species. Relative abundance estimates from surveys with longline gear do not usually account for possible effects of gear saturation, which potentially creates competition among fish for baited hooks and misrepresentations of abundance trends. We examined correlations between catch rates of sablefish (Anoplopoma fimbria) and giant grenadier (Albatrossia pectoralis) and between sablefish and shortraker (Sebastes borealis) and rougheye rockfish (Sebastes aleutianus) from 25 years of longline surveys in Alaska waters for evidence of competition for hooks. Sablefish catch rates were negatively correlated with giant grenadier catch rates in all management areas in Alaskan waters, and sablefish and rockfish were negatively correlated in five of the six areas, indicating that there is likely competition for hooks during longline surveys. Comparative analyses were done for trawl survey catch rates, and no negative correlations were observed, indicating that the negative correlations on the longline surveys are not due to differing habitat preferences or direct competition. Available adjustments for gear saturation may be biased if the probability of capture does not decrease linearly with baited hooks. A better understanding of each fish species’ catch probabilities on longline gear are needed before adjustments for hook competition can be made.
Resumo:
Data collected during fish-ery-independent sampling programs were used to examine the impact of appendage damage (indicated by lost or regenerated legs and antennae) on the reproductive output of female western rock lobster (Panulirus cygnus). Most of the damaged females sampled had one (53%), two (27%), or three (13%) appendages that had been lost or that were regenerating. Appendage damage was associated with the reduced probability of a female developing ovigerous setae; and if setae were produced, with the reduced probability that females would produce more than one batch of eggs within a season. These effects were more pronounced as the number of damaged appendages increased. From data collected in 2002, it was estimated that the total number of eggs produced by mature females caught in the fishery was significantly reduced (P<0.001) by 3–9% when the impact of appendage damage was included.
Resumo:
Background: Chagas disease is caused by Trypanosoma cruzi, and humans acquire the parasite by exposure to contaminated feces from hematophagous insect vectors known as triatomines. Triatoma virus (TrV) is the sole viral pathogen of triatomines, and is transmitted among insects through the fecal-oral route and, as it happens with T. cruzi, the infected insects release the virus when defecating during or after blood uptake. Methods: In this work, we analysed the occurrence of anti-TrV antibodies in human sera from Chagas disease endemic and non-endemic countries, and developed a mathematical model to estimate the transmission probability of TrV from insects to man, which ranged between 0.00053 and 0.0015. Results: Our results confirm that people with Chagas disease living in Bolivia, Argentina and Mexico have been exposed to TrV, and that TrV is unable to replicate in human hosts. Conclusions: We presented the first experimental evidence of antibodies against TrV structural proteins in human sera.
Resumo:
Predicting and under-standing the dynamics of a population requires knowledge of vital rates such as survival, growth, and reproduction. However, these variables are influenced by individual behavior, and when managing exploited populations, it is now generally realized that knowledge of a species’ behavior and life history strategies is required. However, predicting and understanding a response to novel conditions—such as increased fishing-induced mortality, changes in environmental conditions, or specific management strategies—also require knowing the endogenous or exogenous cues that induce phenotypic changes and knowing whether these behaviors and life history patterns are plastic. Although a wide variety of patterns of sex change have been observed in the wild, it is not known how the specific sex-change rule and cues that induce sex change affect stock dynamics. Using an individual based model, we examined the effect of the sex-change rule on the predicted stock dynamics, the effect of mating group size, and the performance of traditional spawning-per-recruit (SPR) measures in a protogynous stock. We considered four different patterns of sex change in which the probability of sex change is determined by 1) the absolute size of the individual, 2) the relative length of individuals at the mating site, 3) the frequency of smaller individuals at the mating site, and 4) expected reproductive success. All four pat-terns of sex change have distinct stock dynamics. Although each sex-change rule leads to the prediction that the stock will be sensitive to the size-selective fishing pattern and may crash if too many reproductive size classes are fished, the performance of traditional spawning-per-recruit measures, the fishing pattern that leads to the greatest yield, and the effect of mating group size all differ distinctly for the four sex-change rules. These results indicate that the management of individual species requires knowledge of whether sex change occurs, as well as an understanding of the endogenous or exogenous cues that induce sex change.
Resumo:
Shrimp fishermen trawling in the Gulf of Mexico and south Atlantic inadvertently capture and kill sea turtles which are classified as endangered species. Recent legislation requires the use of a Turtle Excluder Device(TED) which, when in place in the shrimp trawl, reduces sea turtle mortality. The impact of the TED on shrimp production is not known. This intermediate analysis of the TED regulations using an annual firm level simulation model indicated that the average Texas shrimp vessel had a low probability of being an economic success before regulations were enacted. An assumption that the TED regulations resulted in decreased production aggravated this condition and the change in Ending Net Worth and Net Present Value of Ending Net Worth before and after a TED was placed in the net was significant at the 5 percent level. However, the difference in the Internal Rate of Return for the TED and non-TED simulations was not significant unless the TED caused a substantial change in catch. This analysis did not allow for interactions between the fishermen in the shrimp industry, an assumption which could significantly alter the impact of TED use on the catch and earnings of the individual shrimp vessel.
Resumo:
Black Sea Bass (Centropristis striata) in the mid-Atlantic Bight undertake seasonal cross-shelf movements to occupy inshore rocky reefs and hardbottom habitats between spring and fall. Shelf-wide migrations of this stock are well documented, but movements and home ranges of fish during their inshore residency period have not been described. We tagged 122 Black Sea Bass with acoustic transmitters at a mid-Atlantic reef to estimate home-range size and factors that influence movements (>400 m) at a 46.1-km2 study site between May and November 2003. Activity of Black Sea Bass was greatest and most consistent during summer but declined rapidly in September as water temperatures at the bottom of the seafloor increased on the inner shelf. Black Sea Bass maintained relatively large home ranges that were fish-size invariant but highly variable (13.7–736.4 ha), underscoring the importance of large sample sizes in examination of population-level characteristics of mobile species with complex social interactions. On the basis of observed variations in movement patterns and the size of home ranges, we postulate the existence of groups of conspecifics that exhibit similar space-use behaviors. The group of males released earlier in the tagging period used larger home ranges than the group of males released later in our study. In addition, mean activity levels and the probability of movement among acoustic stations varied among groups of fish in a complex manner that depended on sex. These differences in movement behaviors may increase the vulnerability of male fish to passive fishing gears, further exacerbating variation in exploitation rates for this species among reefs.
Resumo:
Fish traps are commonly used throughout the Caribbean to catch reef fish species and lobster and are the primary gear of choice for fishermen in the U.S. Virgin Islands. Once they are lost or abandoned they are referred to as derelict fish traps (DFTs)and a widespread concern exists that they contribute to ghostfishing. Ghostfishing occurs when derelict fishing gear continues to catch fish and induce mortality. Despite the public concerns that DFTs are an environmental threat, few studies have quantified the level of ghostfishing in the Caribbean. To address concerns from the fishing community and other marine stakeholders, this study provides the first experimental examination of ghostfishing impacts to fish and the potential economic impacts to fisheries in the U.S. Virgin Islands.
Resumo:
This report describes a surveillance strategy to detect deepwater invasive species in the Northwestern Hawaiian Islands. A need for this strategy was identified in the Papahānaumokuākea Marine National Monument Management Plan and the Monument’s Draft Natural Resources Science Plan. This strategy focuses on detecting two species of concern, the octocoral Carijoa riisei and the red alga Hypnea musciformis. Most research on invasive species in the Hawaiian archipelago has focused on shallow water habitats within the limits of conventional SCUBA (0-30 m). Deeper habitats such as mesophotic reefs are much more difficult to access and consequently little is known about the distribution of deepwater invasive species or their impacts. Recent deepwater (>30 m) sightings of H. musciformis and C. riisei, in and near NWHI, respectively, have prompted a call for further research and surveillance of invasive species in deepwater habitats. This report compiles the most up to date information about these two species of concern in deepwater habitats. A literature search and conversations with subject matter experts was used to identify their current distribution, preferred habitat types, optimal detection methods and ways to efficiently sample the vast extent of NWHI. The proposed sampling strategy prioritizes survey effort where C. riisei and H. musciformis are most likely to be found. At coarse spatial scales (tens to hundreds of kilometers), opportunistic observations and distance from the Main Hawaiian Islands, a principal propagule source, are used to identify high-risk islands and banks. At fine spatial scales (meters to tens of kilometers) a habitat suitability model was developed to identify high-risk habitats. The habitat suitability model focused on habitat preferences of C. riisei, since the species is well studied and adequate data exists to map habitats. There was insufficient information to identify suitable habitat for H. muscifomis. Habitat preferences for the algae are poorly understood and there is a lack of data at relevant spatial scales to map those preferences which are known. The principal habitats identified by the habitat suitability model were ledges and the edges of rugose coral reefs, where the shade loving octocoral would likely be found. Habitat suitability maps were developed for seven atolls and banks to aid in survey site selection. The protocol relied on technical divers to conduct visual surveys of benthic habitats. It was developed to increase the efficiency of surveys, maximize the probability of detection, identify important information relevant to future surveys and standardize results. The strategy, model and protocol were tested during a field mission in 2009 at several atolls and islands in NWHI. The field mission did not detect any invasive species among deepwater habitats and much was learned to improve future surveys. Data gaps and improvements are discussed.