919 resultados para Presence-absence Data
Resumo:
The mammalian ortholog of the conserved Drosophila adaptor protein Numb (Nb) and its homolog Numblike (Nbl) modulate neuronal cell fate determination at least in part by antagonizing Notch signaling. Because the Notch pathway has been implicated in regulating hemopoietic stem cell self-renewal and T cell fate specification in mammals, we investigated the role of Nb and Nbl in hemopoiesis using conditional gene targeting. Surprisingly simultaneous deletion of both Nb and Nbl in murine bone marrow precursors did not affect the ability of stem cells to self-renew or to give rise to differentiated myeloid or lymphoid progeny, even under competitive conditions in mixed chimeras. Furthermore, T cell fate specification and intrathymic T cell development were unaffected in the combined absence of Nb and Nbl. Collectively our data indicate that the Nb family of adaptor proteins is dispensable for hemopoiesis and lymphopoiesis in mice, despite their proposed role in neuronal stem cell development.
Resumo:
Limited information is available regarding the methodology required to characterize hashish seizures for assessing the presence or the absence of a chemical link between two seizures. This casework report presents the methodology applied for assessing that two different police seizures were coming from the same block before this latter one was split. The chemical signature was extracted using GC-MS analysis and the implemented methodology consists in a study of intra- and inter-variability distributions based on the measurement of the chemical profiles similarity using a number of hashish seizures and the calculation of the Pearson correlation coefficient. Different statistical scenarios (i.e., a combination of data pretreatment techniques and selection of target compounds) were tested to find the most discriminating one. Seven compounds showing high discrimination capabilities were selected on which a specific statistical data pretreatment was applied. Based on the results, the statistical model built for comparing the hashish seizures leads to low error rates. Therefore, the implemented methodology is suitable for the chemical profiling of hashish seizures.
Resumo:
Brain deformations induced by space-occupying lesions may result in unpredictable position and shape of functionally important brain structures. The aim of this study is to propose a method for segmentation of brain structures by deformation of a segmented brain atlas in presence of a space-occupying lesion. Our approach is based on an a priori model of lesion growth (MLG) that assumes radial expansion from a seeding point and involves three steps: first, an affine registration bringing the atlas and the patient into global correspondence; then, the seeding of a synthetic tumor into the brain atlas providing a template for the lesion; finally, the deformation of the seeded atlas, combining a method derived from optical flow principles and a model of lesion growth. The method was applied on two meningiomas inducing a pure displacement of the underlying brain structures, and segmentation accuracy of ventricles and basal ganglia was assessed. Results show that the segmented structures were consistent with the patient's anatomy and that the deformation accuracy of surrounding brain structures was highly dependent on the accurate placement of the tumor seeding point. Further improvements of the method will optimize the segmentation accuracy. Visualization of brain structures provides useful information for therapeutic consideration of space-occupying lesions, including surgical, radiosurgical, and radiotherapeutic planning, in order to increase treatment efficiency and prevent neurological damage.
Resumo:
A first episode of depression after 65 years of age has long been associated with both severe macrovascular and small microvascular pathology. Among the three more frequent forms of depression in old age, post-stroke depression has been associated with an abrupt damage of cortical circuits involved in monoamine production and mood regulation. Late-onset depression (LOD) in the absence of stroke has been related to lacunes and white matter lesions that invade both the neocortex and subcortical nuclei. Recurrent late-life depression is thought to induce neuronal loss in the hippocampal formation and white matter lesions that affect limbic pathways. Despite an impressive number of magnetic resonance imaging (MRI) studies in this field, the presence of a causal relationship between structural changes in the human brain and LOD is still controversial. The present article provides a critical overview of the contribution of neuropathology in post-stroke, late-onset, and late-life recurrent depression. Recent autopsy findings challenge the role of stroke location in the occurrence of post-stroke depression by pointing to the deleterious effect of subcortical lacunes. Despite the lines of evidences supporting the association between MRI-assessed white matter changes and mood dysregulation, lacunes, periventricular and deep white matter demyelination are all unrelated to the occurrence of LOD. In the same line, neuropathological data show that early-onset depression is not associated with an acceleration of aging-related neurodegenerative changes in the human brain. However, they also provide data in favor of the neurotoxic theory of depression by showing that neuronal loss occurs in the hippocampus of chronically depressed patients. These three paradigms are discussed in the light of the complex relationships between psychosocial determinants and biological vulnerability in affective disorders.
Resumo:
On December 4th 2007, a 3-Mm3 landslide occurred along the northwestern shore of Chehalis Lake. The initiation zone is located at the intersection of the main valley slope and the northern sidewall of a prominent gully. The slope failure caused a displacement wave that ran up to 38 m on the opposite shore of the lake. The landslide is temporally associated with a rain-on-snow meteorological event which is thought to have triggered it. This paper describes the Chehalis Lake landslide and presents a comparison of discontinuity orientation datasets obtained using three techniques: field measurements, terrestrial photogrammetric 3D models and an airborne LiDAR digital elevation model to describe the orientation and characteristics of the five discontinuity sets present. The discontinuity orientation data are used to perform kinematic, surface wedge limit equilibrium and three-dimensional distinct element analyses. The kinematic and surface wedge analyses suggest that the location of the slope failure (intersection of the valley slope and a gully wall) has facilitated the development of the unstable rock mass which initiated as a planar sliding failure. Results from the three-dimensional distinct element analyses suggest that the presence, orientation and high persistence of a discontinuity set dipping obliquely to the slope were critical to the development of the landslide and led to a failure mechanism dominated by planar sliding. The three-dimensional distinct element modelling also suggests that the presence of a steeply dipping discontinuity set striking perpendicular to the slope and associated with a fault exerted a significant control on the volume and extent of the failed rock mass but not on the overall stability of the slope.
Resumo:
ABSTRACT: BACKGROUND: Cardiovascular magnetic resonance (CMR) has favorable characteristics for diagnostic evaluation and risk stratification of patients with known or suspected CAD. CMR utilization in CAD detection is growing fast. However, data on its cost-effectiveness are scarce. The goal of this study is to compare the costs of two strategies for detection of significant coronary artery stenoses in patients with suspected coronary artery disease (CAD): 1) Performing CMR first to assess myocardial ischemia and/or infarct scar before referring positive patients (defined as presence of ischemia and/or infarct scar to coronary angiography (CXA) versus 2) a hypothetical CXA performed in all patients as a single test to detect CAD. METHODS: A subgroup of the European CMR pilot registry was used including 2,717 consecutive patients who underwent stress-CMR. From these patients, 21% were positive for CAD (ischemia and/or infarct scar), 73% negative, and 6% uncertain and underwent additional testing. The diagnostic costs were evaluated using invoicing costs of each test performed. Costs analysis was performed from a health care payer perspective in German, United Kingdom, Swiss, and United States health care settings. RESULTS: In the public sectors of the German, United Kingdom, and Swiss health care systems, cost savings from the CMR-driven strategy were 50%, 25% and 23%, respectively, versus outpatient CXA. If CXA was carried out as an inpatient procedure, cost savings were 46%, 50% and 48%, respectively. In the United States context, cost savings were 51% when compared with inpatient CXA, but higher for CMR by 8% versus outpatient CXA. CONCLUSION: This analysis suggests that from an economic perspective, the use of CMR should be encouraged as a management option for patients with suspected CAD.
Resumo:
The significance of the Brianconnais domain in the Alpine orogen is reviewed in the light of data concerning its collision with the active Adriatic margin and the passive Helvetic margin. The Brianconnais which formerly belonged to the Iberian plate, was located on the northern margin of the Alpine Tethys (Liguro-Piemont ocean) since its opening in the early-Middle Jurassic. Together with the Iberian plate the Brianconnais terrane was separated from the European plate in the Late Jurassic-Early Cretaceous, following the northern Atlantic, Bay of Biscay, Valais ocean opening. This was accompanied by the onset of subduction along the northern margin of Adria and the closure of the Alpine Tethys. Stratigraphic and metamorphic data regarding this subduction and the geohistory of the Brianconnais allows the scenario of subduction-obduction processes during the Late Cretaceous-early Tertiary in the eastern and western Alps to be specified. HP-LT metamorphism record a long-lasting history of oceanic subduction-accretion, followed in the Middle Eocene by the incorporation of the Brianconnais as an exotic terrane into the accretionary prism. Middle to Late Eocene cooling ages of the Brianconnais basement and the presence of pelagic, anorogenic sedimentation lasting until the Middle Eocene on the Brianconnais preclude any sort of collision before that time between this domain and the active Adria margin or the Helvetic margin. This is confirmed by plate reconstructions constrained by magnetic anomalies in the Atlantic domain. Only a small percentage of the former Brianconnais domain was obducted, most of the crust and lithospheric roots were subducted. This applies also to domains formerly belonging to the southern Alpine Tethys margin (Austroalpine-inner Carpathian domain). It is proposed that there was a single Palaeogene subduction zone responsible for the Alpine orogen formation (from northern Spain to the East Carpathians), with the exception of a short-lived Late Cretaceous partial closure of the Valais ocean. Subduction in the western Tethyan domain originated during the closure of the Meliata ocean during the Jurassic incorporating the Austroalpine-Carpathian domain as terranes during the Cretaceous. The subduction zone propagated into the northern margin of Adria and then to the northern margin of the Iberian plate, where it gave birth to the Pyrenean-Provencal orogenic belt. This implies the absence of a separated Cretaceous subduction zone within the Austro-Carpathian Penninic ocean. Collision of Iberia with Europe forced the subduction to jump to the SE margin of Iberia in the Eocene, creating the Apenninic orogenic wedge and inverting the vergence of subduction from south- to north-directed. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
Duchenne muscular dystrophy is an X-linked genetic disease caused by the absence of functional dystrophin. Pharmacological upregulation of utrophin, the autosomal homologue of dystrophin, offers a potential therapeutic approach to treat Duchenne patients. Full-length utrophin mRNA is transcribed from two alternative promoters, called A and B. In contrast to the utrophin promoter A, little is known about the factors regulating the activity of the utrophin promoter B. Computer analysis of this second promoter revealed the presence of several conserved binding motives for Ets-transcription factors. Using electrotransfer of cDNA into mouse muscles, we demonstrate that a genetically modified beta-subunit of the Ets-transcription factor GA-binding protein potently activates a utrophin promoter B reporter construct in innervated muscle fibers in vivo. These results make the GA-binding protein and the signaling cascade regulating its activity in muscle cells, potential targets for the pharmacological modulation of utrophin expression in Duchenne patients.
Resumo:
Sentinel lymph node dissection (SLND) identifies melanoma patients with metastatic disease who would benefit from radical lymph node dissection (RLND). Rarely, patients with melanoma have an underlying lymphoproliferative disease, and melanoma metastases might develop as collision tumours in the sentinel lymph node (SLN). The aim of this study was to measure the incidence and examine the effect of collision tumours on the accuracy of SLND and on the validity of staging in this setting. Between 1998 and 2012, 750 consecutive SLNDs were performed in melanoma patients using the triple technique (lymphoscintigraphy, gamma probe and blue dye). The validity of SLND in collision tumours was analysed. False negativity was reflected by the disease-free survival. The literature was reviewed on collision tumours in melanoma. Collision tumours of melanoma and chronic lymphocytic leukaemia (CLL) were found in two SLN and in one RLND (0.4%). Subsequent RLNDs of SLND-positive cases were negative for melanoma. The patient with negative SLND developed relapse after 28 months with an inguinal lymph node metastasis of melanoma; RLND showed collision tumours. The literature review identified 12 cases of collision tumours. CLL was associated with increased melanoma incidence and reduced overall survival. This is, to our knowledge, the first assessment of the clinical value of SLND when collision tumours of melanoma and CLL are found. In this small series of three patients with both malignancies present in the same lymph node basin, lymphocytic infiltration of the CLL did not alter radioisotope uptake into the SLN. No false-negative result was observed. Our data suggest the validity of SLND in collision tumours, but given the rarity of the problem, further studies are necessary to confirm this reliability.
Resumo:
Activation of the hepatoportal glucose sensors by portal glucose infusion leads to increased glucose clearance and induction of hypoglycemia. Here, we investigated whether glucagon-like peptide-1 (GLP-1) could modulate the activity of these sensors. Mice were therefore infused with saline (S-mice) or glucose (P-mice) through the portal vein at a rate of 25 mg/kg. min. In P-mice, glucose clearance increased to 67.5 +/- 3.7 mg/kg. min as compared with 24.1 +/- 1.5 mg/kg. min in S-mice, and glycemia decreased from 5.0 +/- 0.1 to 3.3 +/- 0.1 mmol/l at the end of the 3-h infusion period. Coinfusion of GLP-1 with glucose into the portal vein at a rate of 5 pmol/kg. min (P-GLP-1 mice) did not increase the glucose clearance rate (57.4 +/- 5.0 ml/kg. min) and hypoglycemia (3.8 +/- 0.1 mmol/l) observed in P-mice. In contrast, coinfusion of glucose and the GLP-1 receptor antagonist exendin-(9-39) into the portal vein at a rate of 0.5 pmol/kg. min (P-Ex mice) reduced glucose clearance to 36.1 +/- 2.6 ml/kg. min and transiently increased glycemia to 9.2 +/- 0.3 mmol/l at 60 min of infusion before it returned to the fasting level (5.6 +/- 0.3 mmol/l) at 3 h. When glucose and exendin-(9-39) were infused through the portal and femoral veins, respectively, glucose clearance increased to 70.0 +/- 4.6 ml/kg. min and glycemia decreased to 3.1 +/- 0.1 mmol/l, indicating that exendin-(9-39) has an effect only when infused into the portal vein. Finally, portal vein infusion of glucose in GLP-1 receptor(-/-) mice failed to increase the glucose clearance rate (26.7 +/- 2.9 ml/kg. min). Glycemia increased to 8.5 +/- 0.5 mmol/l at 60 min and remained elevated until the end of the glucose infusion (8.2 +/- 0.4 mmol/l). Together, our data show that the GLP-1 receptor is part of the hepatoportal glucose sensor and that basal fasting levels of GLP-1 sufficiently activate the receptor to confer maximum glucose competence to the sensor. These data demonstrate an important extrapancreatic effect of GLP-1 in the control of glucose homeostasis.
Resumo:
Introduction: The presence of intra-articular basic calcium phosphate (BCP) crystals, including OCP, carbonated-apatite, hydroxyapatite and tricalcium phosphate crystals, is associated with severe osteoarthritis and destructive arthropathies such as Milwaukee shoulder. Although BCP crystals displayed, in vitro, mitogenic, anabolic and catabolic responses, their intra-articular effect was never assessed.Objective: To determine the effects of OCP crystals in joints in vivo.Methods: OCP crystals (200 ug in 20 ml PBS) were injected into the right knee joint (the contra-lateral knee joint injected with 20 ul of PBS serving as a control) of wild-type mice treated or not by the IL1R antagonist Anakinra or mice deficient for the inflammasome proteins ASC and NALP3. 4 days and 17 days after crystal injection, mice were sacrificed and knee joints dissected. Histological scoring for synovial inflammation and characterisation of macrophages, neutrophils and T cells were performed. Technetium (Tc) uptake was measured at 6h, 1 and 4 days after OCP injection. Cartilage degradation was evaluated by Safranin O staining and VDIPEN immunohistochemistry. Intra-articular localisation of injected OCP crystals was evidenced by Von Kossa staining.Results: The intra-articular localisation of injected OCP crystals was evidenced by Von Kossa staining performed on non-decalcified samples embedded in methyl-metacrylate. Injection of OCP crystals into knee joints led at day 4 to an inflammatory response with intense macrophage staining and also some neutrophil recruitment in the synovial membrane. This synovitis was not accompanied by increased Tc uptake into the knee joint, Tc uptake being similar in OCP crystal injected knee or control knee at all time points investigated (6h, 1 day, 4 days). The histological modifications persisted over 17 days, with an additional fibrosis evidenced at this later time-point. The OCP crystal-induced synovitis was totally IL-1a and IL-1 independent as shown by the absence of inhibitory effects of anakinra injected into wild-type mice. Accordingly, OCP crystal-induced synovitis was similar in ASC-/- and NALP3-/- mice as no alterations of inflammation were demonstrated between these mice groups. Concerning cartilage matrix degradation, OCP crystals induced a strong breakdown of proteoglycans 4 and 17 days after injection, as measured by loss of red staining from Safranin O-stained sections of cartilage surfaces. In addition, we also measured advanced cartilage matrix destruction mediated by MMPs, as evidenced by VDIPEN staining of cartilage. OCP-mediated cartilage degradation was similar in all experimental conditions tested (WT+Anakinra, or ASC or NALP3 deficient mice).Conclusion: These data indicate in vivo that the intra-articular presence of OCP crystals is associated with cartilage destruction along with synovial inflammation. This is an interesting and new model of destructive arthropathy related to BCP crystals which will allow to assess new therapies in this disease.
Resumo:
Glucose production by liver is a major physiological function, which is required to prevent development of hypoglycemia in the postprandial and fasted states. The mechanism of glucose release from hepatocytes has not been studied in detail but was assumed instead to depend on facilitated diffusion through the glucose transporter GLUT2. Here, we demonstrate that in the absence of GLUT2 no other transporter isoforms were overexpressed in liver and only marginally significant facilitated diffusion across the hepatocyte plasma membrane was detectable. However, the rate of hepatic glucose output was normal. This was evidenced by (i) the hyperglycemic response to i.p. glucagon injection; (ii) the in vivo measurement of glucose turnover rate; and (iii) the rate of release of neosynthesized glucose from isolated hepatocytes. These observations therefore indicated the existence of an alternative pathway for hepatic glucose output. Using a [14C]-pyruvate pulse-labeling protocol to quantitate neosynthesis and release of [14C]glucose, we demonstrated that this pathway was sensitive to low temperature (12 degreesC). It was not inhibited by cytochalasin B nor by the intracellular traffic inhibitors brefeldin A and monensin but was blocked by progesterone, an inhibitor of cholesterol and caveolae traffic from the endoplasmic reticulum to the plasma membrane. Our observations thus demonstrate that hepatic glucose release does not require the presence of GLUT2 nor of any plasma membrane glucose facilitative diffusion mechanism. This implies the existence of an as yet unsuspected pathway for glucose release that may be based on a membrane traffic mechanism.
Resumo:
Persistent viruses are kept in check by specific lymphocytes. The clonal T cell receptor (TCR) repertoire against Epstein-Barr virus (EBV), once established following primary infection, exhibits a robust stability over time. However, the determinants contributing to this long-term persistence are still poorly characterized. Taking advantage of an in vivo clinical setting where lymphocyte homeostasis was transiently perturbed, we studied EBV antigen-specific CD8 T cells before and after non-myeloablative lympho-depleting chemotherapy of melanoma patients. Despite more advanced T cell differentiation, patients T cells showed clonal composition comparable to healthy individuals, sharing a preference for TRBV20 and TRBV29 gene segment usage and several co-dominant public TCR clonotypes. Moreover, our data revealed the presence of relatively few dominant EBV antigen-specific T cell clonotypes, which mostly persisted following transient lympho-depletion (TLD) and lymphocyte recovery, likely related to absence of EBV reactivation and de novo T cell priming in these patients. Interestingly, persisting clonotypes frequently co-expressed memory/homing-associated genes (CD27, IL7R, EOMES, CD62L/SELL and CCR5) supporting the notion that they are particularly important for long-lasting CD8 T cell responses. Nevertheless, the clonal composition of EBV-specific CD8 T cells was preserved over time with the presence of the same dominant clonotypes after non-myeloablative chemotherapy. The observed clonotype persistence demonstrates high robustness of CD8 T cell homeostasis and reconstitution.
Resumo:
Summary : The canonical Wnt signaling pathway plays key roles in the maintenance of self-renewing tissues, like the gut or the skin. In contrast, the role of this pathway in hematopoiesis remains poorly defined. Wnt ligands transmit signals through ß-catenin which activates gene transcription upon its association with Lymphoid Cell Enhancer/T Cell Factor (LEF/TCF). Currently, v-catenin is the only alternative factor known to transduce canonical Wnt signals. The ß-/γ-catenin bindiná domain in TCF-1 is required to partly rescue thymopoiesis and NK cell development in TCF-1-deficient mice. However, T cell development and hematopoiesis w-as normal in mice deficient of ß-catenin, or of γ-catenin. Surprisingly we found that hematopoiesis and thymopoiesis was also normal in the combined absence of ß- and γ-catenin. Reporter assays showed that double-deficient lymphocytes were still able to transduce canonical wnt signals. These data provided evidence that hematopoietic cells can transduce canonical Wnt signals in the combined absence of ß- and γ-catenin. There exist numerous TCF-1 isoforrns including those that harbor the N-terminal ß-/y-catenin binding domain or that contains a C-terminal CRARF domain whose role in vivo has not been previously tested. We found that the CRARF domain influences lymphocyte development in conjunction with the N-treminal ß-/γ-catenin binding. The presence of the two domains directs thymocytes to the CD8+ T cell lineage whereas NK cell development is abolished. Roles of the canonical Wnt/TCF-1 pathway for lymphocyte function have not been defined. We demonstrate that TCF-1 deficient CDBT T cells mount a normal primary response to viral infection but these T cells fail to expand upon restimulation. The failure of CD8+ T cells to respond to IL-2 during primary infection seems to account for this phenotype. Thus, TCF-1 is essential for programming functional CD8+ T cell memory. Collectively, these data provide significant new insights into the role of Wnt/TCF-1 pathway for lymphocyte development and function and suggest a novel mechanism of Wnt signal transuction in hematopoietic cells. Résumé : La voie de signalisation canonique Wnt joue un rôle prépondérant dans le renouvellement de tissus, comme l'intestin ou la peau. Son rôle dans l'hématopoïèse est quant à lui mal défini. Le ligand Wnt transmet le signal via la ß-catenin qui active la transcription de gènes cibles quand il est associé avec Lymphoid Cell Enhancer,~T Cell Factor (LEF/TCF). Actuellement, la γ-catenin est le seul autre facteur connu pouvant se substituer à la fonction de la ß-catenin. Un variant de TCF-1 contenant le domaine liant ß-/,~-catenin est capable de restaurer le développement des lymphocytes T et NK en l'absence de TCF-1. Cependant la thymopoïèse et l'hématopoïèse sont normales dans les souris déficientes pour la ß-catenin ou la γ-catenin. De façon surprenante, nous avons trouvé que l'hématopoïèse et le développement des lymphocytes sont normaux lors de l'absence combinée de ß-/γ-catenin. De plus, la transduction des signaux de la voie de signalisation Wnt est maintenue dans des lymphocytes déficients pour ß-/γ-catenin. Ces résultats démontrent que les cellules hématopoïétiques peuvent transmettre les signaux de la voie canonique Wnt lors de l'absence combinée de la ß et la γ -catenin. Il existe de nombreuses isofonnes de TCF-1, y compris certaines qui comprennent un domaine qui lie ß-/γ-catenin du côté N-terminus ou qui contiennent un domaine CRARF du côté C-terminus. Nous montrons ici que le domaine CRARF influence le développement des lymphocytes en conjonction avec le domaine liant ß-/γ-catenin. La présence des deux domaines dirige les thymocytes vers la lignée de cellules T CD8, alors que le développement des cellules NK est aboli. Au-delà de sa fonction sur le développement des lymphocytes, le rôle de la soie de signalisation canonique Wnt/TCF-1 lors d'une infection n'a pas été défini. Nous avons montré que les cellules T CD8, déficientes pour TCF-1, développent une réponse primaire normale à une infection virale, mais qu'elles ne s'accumulent pas après restimulation. L'incapacité des cellules TCD8 à répondre à l'IL-2 durant la réponse primaire peut expliquer ce phénotype. Ainsi; TCF-1 est essentiel pour la programmation de cellules T CD8 mémoires fonctionnelles. L'ensemble de ces résultats fournit de nouveaux aperçus du rôle de la voie de signalisation Wnt/TCF-1 pour le développement et la fonction des lymphocytes et suggèrent un nouveau mécanisme de transduction du signal Wnt dans les cellules hématopoïétiques.
Resumo:
Glut-2 is a low-affinity transporter present in the plasma membrane of pancreatic beta-cells, hepatocytes and intestine and kidney absorptive epithelial cells of mice. In beta-cells, Glut-2 has been proposed to be active in the control of glucose-stimulated insulin secretion (GSIS; ref. 2), and its expression is strongly reduced in glucose-unresponsive islets from different animal models of diabetes. However, recent investigations have yielded conflicting data on the possible role of Glut-2 in GSIS. Whereas some reports have supported a specific role for Glut-2 (refs 5,6), others have suggested that GSIS could proceed normally even in the presence of low or almost undetectable levels of this transporter. Here we show that homozygous, but not heterozygous, mice deficient in Glut-2 are hyperglycaemic and relatively hypo-insulinaemic and have elevated plasma levels of glucagon, free fatty acids and beta-hydroxybutyrate. In vivo, their glucose tolerance is abnormal. In vitro, beta-cells display loss of control of insulin gene expression by glucose and impaired GSIS with a loss of first phase but preserved second phase of secretion, while the secretory response to non-glucidic nutrients or to D-glyceraldehyde is normal. This is accompanied by alterations in the postnatal development of pancreatic islets, evidenced by an inversion of the alpha- to beta-cell ratio. Glut-2 is thus required to maintain normal glucose homeostasis and normal function and development of the endocrine pancreas. Its absence leads to symptoms characteristic of non-insulin-dependent diabetes mellitus.