991 resultados para Precipitation variability
Resumo:
After an unusually strong and persistent pattern of atmospheric circulation over the United State[s] in Fall 1985, it became quite changeable (although high amplitude anomalies still prevailed). Following a fall that was cold in the West and warm in the East with heavy precipitation, a high pressure ridge set in over the West during December, with generally light precipitation over most of the country. Throughout the winter, the central North Pacific was very active, with large negative atmospheric pressure anomalies centered at about 45°N, l60°W. This activity may have been encouraged by an enhanced meridional eastern North Pacific sea surface temperature (SST) gradient, with positive SST anomalies in the subtropics and negative anomalies in midlatitudes. However, in January, the western high pressure ridge remained strong and temperatures were remarkably warm, increasing the threat of drought in California after the two previous dry winters. However, in February, storms from a greatly expanded and southerly displaced Aleutian Low broke into the West Coast. An unusual siege from February 11 to February 20 flooded central and northern California, with very heavy precipitation and record to near-record runoff. Upwards of 50 percent of annual average precipitation fell on locations from the upper San Joaquin to the Feather River drainage basins, and the largest flow since observations began in the early 1900's was recorded on the Sacramento River at Sacramento. The atmospheric pattern that was responsible for this remarkable stormy spell developed when the western high pressure retrograded to the northwest into the Aleutians, accompanied by the strengthened and southerly extended storm tract that moved into California. Although exact details vary from case to case, this episode displayed meteorological conditions similar to those in several other historical California winter flood events. These included a long duration of very strong westerly to southwesterly winds over a long subtropical fetch into California. Much of the precipitation during this series of storms was orographically induced by the moisture laden flow rising over the Sierra ranges. Due to the warm air mass, snow levels were relatively high (about 7500 feet) during the heaviest precipitation, resulting in copious runoff.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): There were many similarities between the February 1986 storm and that of December 1964 and also December 1955. The 1964 storm hit hardest a little further north and the North Coast took the brunt of that storm. December 1955 also produced higher north coastal area runoff. December 1955 produced greater peaks in the central part of the state than the 1964 flood and is perhaps more comparable south of the Lake Tahoe-American River area. But the real surprise this time was the volume. Four reservoirs, Folsom, Black Butte, Pardee, and Comanche, were filled completely and became surcharged (storing more water than the designed capacity). The 10 day total rainfall amounted to half the normal annual totals at many precipitation stations. The February 1986 flood is a vivid reminder of the extremes of California climate and the value of the extensive system of flood control works in the state. Before the storm, especially in January, there was much concern about the dryness of the water year. Then with the deluge, California's flood control systems were tested. By and large the system worked preventing untold damage and misery for most dwellers in the flat lands.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): Four broad regions of the western United States within which annual streamflows exhibit strong spatial coherence are identified using principal component analysis with a varimax rotation. Geographically, the four regions encompass the Pacific Northwest, Far West-Great Basin, Central Rockies-High Plains, and Northern Great Plains. These regions are really consistent with previously documented, descriptively derived streamflow regimes as well as with general atmospheric circulation and precipitation modes of variation. Collectively, the four regional components account for nearly 63 percent of the total annual variation in western U.S. streamflow. The time history of most principal component patterns exhibit little or no persistence.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): Tree-ring chronologies, developed from cores from Pinyon pines growing on climatically sensitive sites in the north-central Great Basin, have been used to reconstruct precipitation and drought histories of the area from A.D. 1600 to 1982. Analysis of these hydrologic time series helps to place current climatic conditions into the perspective of the past 383 years (since 1600). ... The years 1934 and 1959 were the first and fourth driest while 1934 had the lowest July Palmer Drought Severity Index (PDSI) of the reconstructed records. Nevertheless, the decade of the 1930's is only the seventh driest since 1600; the decade 1953-1962 ranks as the second driest. The driest non-overlapping decade since 1600 was 1856-1865. Interestingly, the second wettest decade was 1932-1941. An examination of 30-year mean precipitation data shows that the driest 30-year period was 1871-1900; 1931-1960 ranks as the fourth driest. The current 30-year period (1951-1980) ranks twelfth.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): Each summer between 1976 and 1984 research was conducted on the Quelccaya Ice Cap with one central objective, to recover an ice core to bedrock from which an approximate 1000 year climatic history for tropical South America could be reconstructed. In 1983 that central objective was accomplished by recovering one core 155 meters in length containing 1350 years and a second core of 163.6 meters containing more than 1500 years of climatic history. ... The most significant climatic event in tropical South America over the last 1500 years was the "Little Ice Age" which is recorded between 1490 to 1880 A.D. in these ice core records. Records from the summit of the Quelccaya Ice Cap show that during the "Little Ice Age" period there was (1) a general increase in particulates (both insoluble and soluble, starting around 1490 A.D. and ending abruptly in 1880 A.D.; (2) an initial increase in net accumulation (1500-1720 A.D.) followed by a period of decreased net accumulation (1720-1860 A.D.); (3) more negative delta-O-18 values beginning in the 1520's and ending around 1880 A.D. The "Little Ice Age" event is evident as a perturbation in all five ice core parameters.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): High-resolution proxy records of climate, such as varves, ice cores, and tree-rings, provide the opportunity for reconstructing climate on a year-by-year basis. In order to do so it is necessary to approximate the complex nonlinear response function of the natural recording system using linear statistical models. Three problems with this approach were discussed, and possible solutions were suggested. Examples were given from a reconstruction of Santa Barbara precipitation based on tree-ring records from Santa Barbara County.
Resumo:
The goal of this work is to examine the properties of recording mechanisms which are common to continuously recording high-resolution natural systems in which climatic signals are imprinted and preserved as proxy records. These systems produce seasonal structures as an indirect response to climatic variability over the annual cycle. We compare the proxy records from four different high-resolution systems: the Quelccaya ice cap of the Peruvian Andes; composite tree ring growth from southern California and the southwestern United States; and the marine varve sedimentation systems in the Santa Barbara basin (off California, United States) and in the Gulf of California, Mexico. An important focus of this work is to indicate how the interannual climatic signal is recorded in a variety of different natural systems with vastly different recording mechanisms and widely separated in space. These high-resolution records are the products of natural processes which should be comparable, to some degree, to human-engineered systems developed to transmit and record physical quantities. We therefore present a simple analogy of a data recording system as a heuristic model to provide some unifying concepts with which we may better understand the formation of the records. This analogy assumes special significance when we consider that natural proxy records are the principal means to extend our knowledge of climatic variability into the past, beyond the limits of instrumentally recorded data.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): A selective but nontheless real record of phytoplankton activity over the Santa Barbara Basin can be obtained from the underlying varved sediments. The phytoplankton groups preserved are: diatoms (frustrules and spores), silicoflagellates, dinoflagellates (cysts) and coccoliths.