948 resultados para Potential cycling technique
Resumo:
This paper sets out to examine from published literature and crash data analyses whether alcohol in bicycle crashes is an issue about which we should be concerned. It discusses factors that have the potential to increase the number of bicycle crashes in which alcohol is involved (such growth in the size and diversity of the cyclist population, and balance and coordination demands) and factors which may reduce the importance of alcohol in bicycle crashes (such as time of data factors and child riders). It also examines data availability issues that contribute to difficulties in determining the true magnitude of the issue. Methods: This paper reviews previous research and reports analyses of data from Queensland, Australia, that examine the role of alcohol in Police-reported road crashes. In Queensland it is an offence to ride a bicycle or drive a motor vehicle with a BAC exceeding 0.05% (or lower for novice and professional drivers). Results: In the five years 2003-2007, alcohol was reported as involved in 165 bicycle crashes (4%). The bicycle rider was coded as “under the influence” or “over the prescribed BAC limit” in 15 were single unit crashes (12%). In multi-vehicle bicycle crashes, alcohol involvement was reported for 16 cyclists (0.4%) and 110 operators of other vehicles (3%). Additional analyses including characteristics of the cyclist crashes involving alcohol and the importance of missing data will be discussed in the paper. Conclusion: The increase in participation in cycling and the vulnerability of cyclists to injuries support the need to examine the role of alcohol in bicycle crashes. Current data suggest that alcohol on the part of the vehicle driver is a larger concern than alcohol on the part of the cyclist, but improvements in data collection are needed before more precise conclusions can be drawn.
Resumo:
Water Sensitive Urban Design (WSUD) practices such as wetlands, bioretention systems and swales are widely implemented in Australia’s urban areas for the mitigation of stormwater pollution and to enhance its reuse potential. In-depth research undertaken has confirmed that these systems do not always perform according to design expectations due to a diversity of reasons. To deliver anticipated benefits, it is critical that they are designed in conformity with catchment and rainfall characteristics and pollutant processes. This in turn entails an in-depth understanding of key pollutant processes. This paper presents the outcomes of extensive research investigations on pollutant characterisation and stormwater pollutant processes on urban catchment surfaces. Outcomes from the research studies revealed the complexities in physical and chemical characteristics of pollutants originating from urban catchments which are strongly influenced by rainfall and catchment characteristics. Based on the research outcomes, recommendations are provided to enhance stormwater treatment performance and to enhance its reuse potential.
Resumo:
This paper presents a multiscale study using the coupled Meshless technique/Molecular Dynamics (M2) for exploring the deformation mechanism of mono-crystalline metal (focus on copper) under uniaxial tension. In M2, an advanced transition algorithm using transition particles is employed to ensure the compatibility of both displacements and their gradients, and an effective local quasi-continuum approach is also applied to obtain the equivalent continuum strain energy density based on the atomistic poentials and Cauchy-Born rule. The key parameters used in M2 are firstly investigated using a benchmark problem. Then M2 is applied to the multiscale simulation for a mono-crystalline copper bar. It has found that the mono-crystalline copper has very good elongation property, and the ultimate strength and Young's modulus are much higher than those obtained in macro-scale.
Resumo:
In this paper, we present a control strategy design technique for an autonomous underwater vehicle based on solutions to the motion planning problem derived from differential geometric methods. The motion planning problem is motivated by the practical application of surveying the hull of a ship for implications of harbor and port security. In recent years, engineers and researchers have been collaborating on automating ship hull inspections by employing autonomous vehicles. Despite the progresses made, human intervention is still necessary at this stage. To increase the functionality of these autonomous systems, we focus on developing model-based control strategies for the survey missions around challenging regions, such as the bulbous bow region of a ship. Recent advances in differential geometry have given rise to the field of geometric control theory. This has proven to be an effective framework for control strategy design for mechanical systems, and has recently been extended to applications for underwater vehicles. Advantages of geometric control theory include the exploitation of symmetries and nonlinearities inherent to the system. Here, we examine the posed inspection problem from a path planning viewpoint, applying recently developed techniques from the field of differential geometric control theory to design the control strategies that steer the vehicle along the prescribed path. Three potential scenarios for surveying a ship?s bulbous bow region are motivated for path planning applications. For each scenario, we compute the control strategy and implement it onto a test-bed vehicle. Experimental results are analyzed and compared with theoretical predictions.
Resumo:
The computation of compact and meaningful representations of high dimensional sensor data has recently been addressed through the development of Nonlinear Dimensional Reduction (NLDR) algorithms. The numerical implementation of spectral NLDR techniques typically leads to a symmetric eigenvalue problem that is solved by traditional batch eigensolution algorithms. The application of such algorithms in real-time systems necessitates the development of sequential algorithms that perform feature extraction online. This paper presents an efficient online NLDR scheme, Sequential-Isomap, based on incremental singular value decomposition (SVD) and the Isomap method. Example simulations demonstrate the validity and significant potential of this technique in real-time applications such as autonomous systems.
Resumo:
Common mode voltage generated by a power converter in combination with parasitic capacitive couplings is a potential source of shaft voltage in an AC motor drive system. In this paper, a three-phase motor drive system supplied with a single-phase AC-DC diode rectifier is investigated in order to reduce shaft voltage in a three-phase AC motor drive system. In this topology, the common mode voltage generated by the inverter is influenced by the AC-DC diode rectifier because the placement of the neutral point is changing in different rectifier circuit states. A pulse width modulation technique is presented by a proper placement of the zero vectors to reduce the common mode voltage level, which leads to a cost effective shaft voltage reduction technique without load current distortion, while keeping the switching frequency constant. Analysis and simulations have been presented to investigate the proposed method.
A Modified inverse integer Cholesky decorrelation method and the performance on ambiguity resolution
Resumo:
One of the research focuses in the integer least squares problem is the decorrelation technique to reduce the number of integer parameter search candidates and improve the efficiency of the integer parameter search method. It remains as a challenging issue for determining carrier phase ambiguities and plays a critical role in the future of GNSS high precise positioning area. Currently, there are three main decorrelation techniques being employed: the integer Gaussian decorrelation, the Lenstra–Lenstra–Lovász (LLL) algorithm and the inverse integer Cholesky decorrelation (IICD) method. Although the performance of these three state-of-the-art methods have been proved and demonstrated, there is still a potential for further improvements. To measure the performance of decorrelation techniques, the condition number is usually used as the criterion. Additionally, the number of grid points in the search space can be directly utilized as a performance measure as it denotes the size of search space. However, a smaller initial volume of the search ellipsoid does not always represent a smaller number of candidates. This research has proposed a modified inverse integer Cholesky decorrelation (MIICD) method which improves the decorrelation performance over the other three techniques. The decorrelation performance of these methods was evaluated based on the condition number of the decorrelation matrix, the number of search candidates and the initial volume of search space. Additionally, the success rate of decorrelated ambiguities was calculated for all different methods to investigate the performance of ambiguity validation. The performance of different decorrelation methods was tested and compared using both simulation and real data. The simulation experiment scenarios employ the isotropic probabilistic model using a predetermined eigenvalue and without any geometry or weighting system constraints. MIICD method outperformed other three methods with conditioning improvements over LAMBDA method by 78.33% and 81.67% without and with eigenvalue constraint respectively. The real data experiment scenarios involve both the single constellation system case and dual constellations system case. Experimental results demonstrate that by comparing with LAMBDA, MIICD method can significantly improve the efficiency of reducing the condition number by 78.65% and 97.78% in the case of single constellation and dual constellations respectively. It also shows improvements in the number of search candidate points by 98.92% and 100% in single constellation case and dual constellations case.
Resumo:
To date, the majority of films that utilise or feature hip hop music and culture, have either been in the realms of documentary, or in ‘show musicals’ (where the film musical’s device of characters’ bursting into song, is justified by the narrative of a pursuit of a career in the entertainment industry). Thus, most films that feature hip hop expression have in some way been tied to the subject of hip hop. A research interest and enthusiasm was developed for utilising hip hop expression in film in a new way, which would extend the narrative possibilities of hip hop film to wider topics and themes. The creation of the thesis film Out of My Cloud, and the writing of this accompanying exegesis, investigates a research concern of the potential for the use of hip hop expression in an ‘integrated musical’ film (where characters’ break into song without conceit or explanation). Context and rationale for Out of My Cloud (an Australian hip hop ‘integrated musical’ film) is provided in this writing. It is argued that hip hop is particularly suitable for use in a modern narrative film, and particularly in an ‘integrated musical’ film, due to its: current vibrancy and popularity, rap (vocal element of hip hop) music’s focus on lyrical message and meaning, and rap’s use as an everyday, non-performative method of communication. It is also argued that Australian hip hop deserves greater representation in film and literature due to: its current popularity, and its nature as a unique and distinct form of hip hop. To date, representation of Australian hip hop in film and television has almost solely been restricted to the documentary form. Out of My Cloud borrows from elements of social realist cinema such as: contrasts with mainstream cinema, an exploration/recognition of the relationship between environment and development of character, use of non-actors, location-shooting, a political intent of the filmmaker, displaying sympathy for an underclass, representation of underrepresented character types and topics, and a loose narrative structure that does not offer solid resolution. A case is made that it may be appropriate to marry elements of social realist film with hip hop expression due to common characteristics, such as: representation of marginalised or underrepresented groups and issues in society, political objectives of the artist/s, and sympathy for an underclass. In developing and producing Out of My Cloud, a specific method of working with, and filming actor improvisation was developed. This method was informed by improvisation and associated camera techniques of filmmakers such as Charlie Chaplin, Mike Leigh, Khoa Do, Dogme 95 filmmakers, and Lars von Trier (post-Dogme 95). A review of techniques used by these filmmakers is provided in this writing, as well as the impact it has made on my approach. The method utilised in Out of My Cloud was most influenced by Khoa Do’s technique of guiding actors to improvise fairly loosely, but with a predetermined endpoint in mind. A variation of this technique was developed for use in Out of My Cloud, which involved filming with two cameras to allow edits from multiple angles. Specific processes for creating Out of My Cloud are described and explained in this writing. Particular attention is given to the approaches regarding the story elements and the music elements. Various significant aspects of the process are referred to including the filming and recording of live musical performances, the recording of ‘freestyle’ performances (lyrics composed and performed spontaneously) and the creation of a scored musical scene involving a vocal performance without regular timing or rhythm. The documentation of processes in this writing serve to make the successful elements of this film transferable and replicable to other practitioners in the field, whilst flagging missteps to allow fellow practitioners to avoid similar missteps in future projects. While Out of My Cloud is not without its shortcomings as a short film work (for example in the areas of story and camerawork) it provides a significant contribution to the field as a working example of how hip hop may be utilised in an ‘integrated musical’ film, as well as being a rare example of a narrative film that features Australian hip hop. This film and the accompanying exegesis provide insights that contribute to an understanding of techniques, theories and knowledge in the field of filmmaking practice.
Resumo:
Bridges are valuable assets of every nation. They deteriorate with age and often are subjected to additional loads or different load patterns than originally designed for. These changes in loads can cause localized distress and may result in bridge failure if not corrected in time. Early detection of damage and appropriate retrofitting will aid in preventing bridge failures. Large amounts of money are spent in bridge maintenance all around the world. A need exists for a reliable technology capable of monitoring the structural health of bridges, thereby ensuring they operate safely and efficiently during the whole intended lives. Monitoring of bridges has been traditionally done by means of visual inspection. Visual inspection alone is not capable of locating and identifying all signs of damage, hence a variety of structural health monitoring (SHM) techniques is used regularly nowadays to monitor performance and to assess condition of bridges for early damage detection. Acoustic emission (AE) is one technique that is finding an increasing use in SHM applications of bridges all around the world. The chapter starts with a brief introduction to structural health monitoring and techniques commonly used for monitoring purposes. Acoustic emission technique, wave nature of AE phenomenon, previous applications and limitations and challenges in the use as a SHM technique are also discussed. Scope of the project and work carried out will be explained, followed by some recommendations of work planned in future.
Resumo:
The ability to reproducibly load bioactive molecules into polymeric microspheres is a challenge. Traditional microsphere fabrication methods typically provide inhomogeneous release profiles and suffer from lack of batch to batch reproducibility, hindering their potential to up-scale and their translation to the clinic. This deficit in homogeneity is in part attributed to broad size distributions and variability in the morphology of particles. It is thus desirable to control morphology and size of non-loaded particles in the first instance, in preparation for obtaining desired release profiles of loaded particles in the later stage. This is achieved by identifying the key parameters involved in particle production and understanding how adapting these parameters affects the final characteristics of particles. In this study, electrospraying was presented as a promising technique for generating reproducible particles made of polycaprolactone, a biodegradable, FDA-approved polymer. Narrow size distributions were obtained by the control of electrospraying flow rate and polymer concentration, with average particle sizes ranging from 10 to 20 um. Particles were shown to be spherical with a homogenous embossed texture, determined by the polymer entanglement regime taking place during electrospraying. No toxic residue was detected by this process based on preliminary cell work using DNA quantification assays, validating this method as suitable for further loading of bioactive components.
Resumo:
Porous yttria-stabilized zirconia (YSZ) has been regarded as a potential candidate for bone substitute due to its high mechanical strength. However, porous YSZ is biologically inert to bone tissue. It is therefore necessary to introduce bioactive coatings onto the walls of the porous structures to enhance its bioactivity. In this study, porous YSZ scaffolds were prepared using a replication technique and then coated with mesoporous bioglass due to its excellent bioactivity. The microstructures were examined using scanning electron microscopy and the mechanical strength was evaluated via compression test. The biocompatibility and bioactivity were also evaluated using bone marrow stromal cell (BMSC) proliferation test and simulated body fluid test.
Resumo:
Cell-based therapy is one of the major potential therapeutic strategies for cardiovascular, neuronal and degenerative diseases in recent years. Synthetic biodegradable polymers have been utilized increasingly in pharmaceutical, medical and biomedical engineering. Control of the interaction of living cells and biomaterials surfaces is one of the major goals in the design and development of new polymeric biomaterials in tissue engineering. The aims of this study is to develop a novel bio-mimic polymeric materials which will facilitate the delivery cells, control cell bioactivities and enhance the focal integration of graft cells with host tissues.
Resumo:
This paper describes algorithms that can musically augment the realtime performance of electronic dance music by generating new musical material by morphing. Note sequence morphing involves the algorithmic generation of music that smoothly transitions between two existing musical segments. The potential of musical morphing in electronic dance music is outlined and previous research is summarised; including discussions of relevant music theoretic and algorithmic concepts. An outline and explanation is provided of a novel Markov morphing process that uses similarity measures to construct transition matrices. The paper reports on a ‘focus-concert’ study used to evaluate this morphing algorithm and to compare its output with performances from a professional DJ. Discussions of this trial include reflections on some of the aesthetic characteristics of note sequence morphing. The research suggests that the proposed morphing technique could be effectively used in some electronic dance music contexts.
Resumo:
This paper addresses the tradeoff between energy consumption and localization performance in a mobile sensor network application. The focus is on augmenting GPS location with more energy-efficient location sensors to bound position estimate uncertainty in order to prolong node lifetime. We use empirical GPS and radio contact data from a largescale animal tracking deployment to model node mobility, GPS and radio performance. These models are used to explore duty cycling strategies for maintaining position uncertainty within specified bounds. We then explore the benefits of using short-range radio contact logging alongside GPS as an energy-inexpensive means of lowering uncertainty while the GPS is off, and we propose a versatile contact logging strategy that relies on RSSI ranging and GPS lock back-offs for reducing the node energy consumption relative to GPS duty cycling. Results show that our strategy can cut the node energy consumption by half while meeting application specific positioning criteria.