998 resultados para Pondicherry waterfront India lungomare darsena hotel museo residenze


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The proportion of chemical elements passing through vegetation prior to being exported in a stream was quantified for a forested tropical watershed(Mule Hole, South India) using an extensive hydrological and geochemical monitoring at several scales. First, a solute annual mass balance was established at the scale of the soil-plant profile for assessing the contribution of canopy interaction and litter decay to the solute fluxes of soil inputs (overland flow) and soil outputs (pore water flow as seepages). Second, based on the respective contributions of overland flow and seepages to the stream flow as estimated by a hydrological lumped model, we assigned the proportion of chemical elements in the stream that transited through the vegetation at both flood event (End Member Mixing Analysis) and seasonal scales. At the scale of the 1D soil-plant profile, leaching from the canopy constituted the main source of K above the ground surface. Litter decay was the main source of Si, whereas alkalinity, Ca and Mg originated in the same proportions from both sources. The contribution of vegetation was negligible for Na. Within the soil, all elements but Na were removed from the pore water in proportions varying from 20% for Cl to 95% for K: The soil output fluxes corresponded to a residual fraction of the infiltration fluxes. The behavior of K, Cl, Ca and Mg in the soil-plant profile can be explained by internal cycling, as their soil output fluxes were similar to the atmospheric inputs. Na was released from soils as a result of Na-plagioclase weathering and accompanied by additional release of Si. Concentration of soil pore water by evapotranspiration might limit the chemical weathering in the soil. Overall, the solute K, Ca, Mg, alkalinity and Si fluxes associated with the vegetation turnover within the small experimental watershed represented 10-15 times the solute fluxes exported by the stream, of which 83-97% transited through the vegetation. One important finding is that alkalinity and Si fluxes at the outlet were not linked to the ``current weathering'' of silicates in this watershed. These results highlight the dual effect of the vegetation cover on the solute fluxes exported from the watershed: On one hand the runoff was limited by evapotranspiration and represented only 10% of the annual rainfall, while on the other hand, 80-90% of the overall solute flux exported by the stream transited through the vegetation. The approach combining geochemical monitoring and accurate knowledge of the watershed hydrological budget provided detailed understanding of several effects of vegetation on stream fluxes: (1) evapotranspiration (limiting), (2) vertical transfer through vegetation from vadose zone to ground surface (enhancing) and (3) redistribution by throughfalls and litter decay. It provides a good basis for calibrating geochemical models and more precisely assessing the role of vegetation on soil processes. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Terrestrial water storage (TWS) plays a key role in the global water cycle and is highly influenced by climate variability and human activities. In this study, monthly TWS, rainfall and Ganga-Brahmaputra river discharge (GBRD) are analysed over India for the period of 2003-12 using remote sensing satellite data. The spatial pattern of mean TWS shows a decrease over a large and populous region of Northern India comprising the foothills of the Himalayas, the Indo-Gangetic Plains and North East India. Over this region, the mean monthly TWS exhibits a pronounced seasonal cycle and a large interannual variability, highly correlated with rainfall and GBRD variations (r > 0.8) with a lag time of 2 months and 1 month respectively. The time series of monthly TWS shows a consistent and statistically significant decrease of about 1 cm year(-1) over Northern India, which is not associated with changes in rainfall and GBRD. This recent change in TWS suggests a possible impact of rapid industrialization, urbanization and increase in population on land water resources. Our analysis highlights the potential of the Earth-observation satellite data for hydrological applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fire and soil temperatures were measured during controlled burns conducted by the Forest Department at two seasonally dry tropical forest sites in southern India, and their relationships with fuel load, fuel moisture and weather variables assessed using stepwise regression. Fire temperatures at the ground level varied between 79 degrees C and 760 degrees C, with higher temperatures recorded at high fuel loads and ambient temperatures, whereas lower temperatures were recorded at high relative humidity. Fire temperatures did not vary with fuel moisture or wind speed. Soil temperatures varied between <79 degrees C and 302 degrees C and were positively correlated with ground-level fire temperatures. Results from the study imply that fuel loads in forested areas have to be reduced to ensure low intensity fires in the dry season. Low fire temperatures would ensure lower mortality of above-ground saplings and minimal damage to root stocks of tree species that would maintain the regenerative capacity of a tropical dry forest subject to dry season wildfires.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Western Ghats of India is among the top 25 biodiversity hotspots in the world. About 43% of the reported 117 bat species in India are found in this region, but few quantitative studies of bat echolocation calls and diversity have been carried out here thus far. A quantitative study of bat diversity was therefore conducted using standard techniques, including mist-netting, acoustical and roost surveys in the wet evergreen forests of Kudremukh National Park in the Western Ghats of Karnataka. A total of 106 bats were caught over 108 sampling nights, representing 17 species, 3 belonging to Megachiroptera and 14 to Microchiroptera. Acoustical and roost surveys added three more species, two from Microchiroptera and one from Megachiroptera. Of these 20 species, 4 belonged to the family Pteropodidae, 10 to Vespertilionidae, 3 to Rhinolophidae, 2 to Megadermatidae and 1 to Hipposideridae. We recorded the echolocation calls of 13 of the 16 microchiropteran species, of which the calls of 4 species (Pipistrellus coromandra, Pipistrellus affinis, Pipistrellus ceylonicus and Harpiocephalus harpia) have been recorded for the first time. Discriminant function analyses of the calls of 11 species provided 91.7% correct classification of individuals to their respective species, indicating that the echolocation calls could be used successfully for non-invasive acoustic surveys and monitoring of bat species in the future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vernacular dwellings are well-suited climate-responsive designs that adopt local materials and skills to support comfortable indoor environments in response to local climatic conditions. These naturally-ventilated passive dwellings have enabled civilizations to sustain even in extreme climatic conditions. The design and physiological resilience of the inhabitants have coevolved to be attuned to local climatic and environmental conditions. Such adaptations have perplexed modern theories in human thermal-comfort that have evolved in the era of electricity and air-conditioned buildings. Vernacular local building elements like rubble walls and mud roofs are given way to burnt brick walls and reinforced cement concrete tin roofs. Over 60% of Indian population is rural, and implications of such transitions on thermal comfort and energy in buildings are crucial to understand. Types of energy use associated with a buildings life cycle include its embodied energy, operational and maintenance energy, demolition and disposal energy. Embodied Energy (EE) represents total energy consumption for construction of building, i.e., embodied energy of building materials, material transportation energy and building construction energy. Embodied energy of building materials forms major contribution to embodied energy in buildings. Operational energy (OE) in buildings mainly contributed by space conditioning and lighting requirements, depends on the climatic conditions of the region and comfort requirements of the building occupants. Less energy intensive natural materials are used for traditional buildings and the EE of traditional buildings is low. Transition in use of materials causes significant impact on embodied energy of vernacular dwellings. Use of manufactured, energy intensive materials like brick, cement, steel, glass etc. contributes to high embodied energy in these dwellings. This paper studies the increase in EE of the dwelling attributed to change in wall materials. Climatic location significantly influences operational energy in dwellings. Buildings located in regions experiencing extreme climatic conditions would require more operational energy to satisfy the heating and cooling energy demands throughout the year. Traditional buildings adopt passive techniques or non-mechanical methods for space conditioning to overcome the vagaries of extreme climatic variations and hence less operational energy. This study assesses operational energy in traditional dwelling with regard to change in wall material and climatic location. OE in the dwellings has been assessed for hot-dry, warm humid and moderate climatic zones. Choice of thermal comfort models is yet another factor which greatly influences operational energy assessment in buildings. The paper adopts two popular thermal-comfort models, viz., ASHRAE comfort standards and TSI by Sharma and Ali to investigate thermal comfort aspects and impact of these comfort models on OE assessment in traditional dwellings. A naturally ventilated vernacular dwelling in Sugganahalli, a village close to Bangalore (India), set in warm - humid climate is considered for present investigations on impact of transition in building materials, change in climatic location and choice of thermal comfort models on energy in buildings. The study includes a rigorous real time monitoring of the thermal performance of the dwelling. Dynamic simulation models validated by measured data have also been adopted to determine the impact of the transition from vernacular to modern material-configurations. Results of the study and appraisal for appropriate thermal comfort standards for computing operational energy has been presented and discussed in this paper. (c) 2014 K.I. Praseeda. Published by Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The subgenus Geckoella, the only ground-dwelling radiation within Cyrtodactylus, closely overlaps in distribution with brookii group Hemidactylus in peninsular India and Sri Lanka. Both groups have Oligocene origins, the latter with over thrice as many described species. The striking difference in species richness led us to believe that Geckoella diversity is underestimated, and we sampled for Geckoella across peninsular India. A multi-locus phylogeny reveals Geckoella diversity is hugely underestimated, with at least seven undescribed species, doubling previously known richness. Strikingly, the new species correspond to cryptic lineages within described Indian species (complexes); a number of these endemic lineages from the hills of peninsular India outside the Western Ghats, highlighting the undocumented diversity of the Indian dry zone. The Geckoella phylogeny demonstrates deep splits between the Indian species and Sri Lankan G. triedrus, and between Indian dry and wet zone clades, dating back to the late Oligocene. Geckoella and brookii group Hemidactylus show contrasting diversification patterns. Geckoella shows signals of niche conservatism and appears to have retained its ancestral forest habitat. The late Miocene burst in speciation in Geckoella may be linked to the expansion of rain forests during the mid-Miocene climatic optimum and subsequent fragmentation with increasing late Miocene aridification. (C) 2014 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Systematic monitoring of subsurface hydrogeochemistry has been carried out for a period of one year in a humid tropical region along the Nethravati-Gurupur River. The major ion and stable isotope (delta O-18 and delta H-2) compositions are used to understand the hydrogeochemistry of groundwater and its interaction with surface water. In the study, it is observed that intense weathering of source rocks is the major source of chemical elements to the surface and subsurface waters. In addition, agricultural activities and atmospheric contributions also control the major ion chemistry of water in the study area. There is a clear seasonality in the groundwater chemistry, which is related to the recharge and discharge of the hydrological system. On a temporal scale, there is a decrease in major cation concentrations during the monsoon which is a result of dilution of sources from the weathering of rock minerals, and an increase in anion concentrations which is contributed by the atmosphere, accompanied by an increase in water level during the monsoon. The stable isotope composition indicates that groundwater in the basin is of meteoric origin and recharged directly from the local precipitation during the monsoonal season. Soon after the monsoon, groundwater and surface water mix in the subsurface region. The groundwater feeds the surface water during the lean river flow season.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Amphibians exhibit extraordinarily diverse sets of reproductive strategies among vertebrates. Understanding life history strategies in an evolutionary framework is lacking for many amphibian species in the tropics. Here, we report a novel reproductive mode where adult frogs enter hollow internodes of bamboo via a small opening, deposit direct developing eggs, and provide parental care. This behaviour is observed in two species of the frog genus Raorchestes. The first description of this unique life history and details of nest site characteristics and embryo development are provided along with ecological comparisons. Evolution of novel reproductive modes and parental care are discussed in context of natural selection. Dearth of natural history information on amphibians in the Western Ghats and much of the South-East Asian region is highlighted with suggestions for further studies.(c) 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 114, 1-11.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Growing demand for urban built spaces has resulted in unprecedented exponential rise in production and consumption of building materials in construction. Production of materials requires significant energy and contributes to pollution and green house gas (GHG) emissions. Efforts aimed at reducing energy consumption and pollution involved with the production of materials fundamentally requires their quantification. Embodied energy (EE) of building materials comprises the total energy expenditure involved in the material production including all upstream processes such as raw material extraction and transportation. The current paper deals with EE of a few common building materials consumed in bulk in Indian construction industry. These values have been assessed based on actual industrial survey data. Current studies on EE of building materials lack agreement primarily with regard to method of assessment and energy supply assumptions (whether expressed in terms of end use energy or primary energy). The current paper examines the suitability of two basic methods; process analysis and input-output method and identifies process analysis as appropriate for EE assessment in the Indian context. A comparison of EE values of building materials in terms of the two energy supply assumptions has also been carried out to investigate the associated discrepancy. The results revealed significant difference in EE of materials whose production involves significant electrical energy expenditure relative to thermal energy use. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the absence of information on species in decline with contracting ranges, management should emphasize remaining populations and protection of their habitats. Threatened by anthropogenic pressure including habitat degradation and loss, sloth bears (Melursus ursinus) in India have become limited in range, habitat, and population size. We identified ecological and anthropogenic determinants of occurrence within an occupancy framework to evaluate habitat suitability of non-protected regions (with sloth bears) in northeastern Karnataka, India. We employed a systematic sampling methodology to yield presence absence data to examine a priori hypotheses of determinants that affected occupancy. These covariates were broadly classified as habitat or anthropogenic factors. Mean number of termite mounds and trees positively influenced sloth bear occupancy, and grazing pressure expounded by mean number of livestock dung affected it negatively. Also, mean percentage of shrub coverage had no impact on bear inhabitance. The best fitting model further predicted habitats in Bukkasagara, Agoli, and Benakal reserved forests to have 38%, 75%, and 88%, respectively, of their sampled grid cells with high occupancies (>0.70) albeit little or no legal protection. We recommend a conservation strategy that includes protection of vegetation stand-structure, maintenance of soil moisture, and enrichment of habitat for the long-term welfare of this species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present here observations on diurnal and seasonal variation of mixing ratio and delta C-13 of air CO2, from an urban station-Bangalore (BLR), India, monitored between October 2008 and December 2011. On a diurnal scale, higher mixing ratio with depleted delta C-13 of air CO2 was found for the samples collected during early morning compared to the samples collected during late afternoon. On a seasonal scale, mixing ratio was found to be higher for dry summer months (April-May) and lower for southwest monsoon months (June-July). The maximum enrichment in delta C-13 of air CO2 (-8.04 +/- 0.02aEuro degrees) was seen in October, then delta C-13 started depleting and maximum depletion (-9.31 +/- 0.07aEuro degrees) was observed during dry summer months. Immediately after that an increasing trend in delta C-13 was monitored coincidental with the advancement of southwest monsoon months and maximum enrichment was seen again in October. Although a similar pattern in seasonal variation was observed for the three consecutive years, the dry summer months of 2011 captured distinctly lower amplitude in both the mixing ratio and delta C-13 of air CO2 compared to the dry summer months of 2009 and 2010. This was explained with reduced biomass burning and increased productivity associated with prominent La Nina condition. While compared with the observations from the nearest coastal and open ocean stations-Cabo de Rama (CRI) and Seychelles (SEY), BLR being located within an urban region captured higher amplitude of seasonal variation. The average delta C-13 value of the end member source CO2 was identified based on both diurnal and seasonal scale variation. The delta C-13 value of source CO2 (-24.9 +/- 3aEuro degrees) determined based on diurnal variation was found to differ drastically from the source value (-14.6 +/- 0.7aEuro degrees) identified based on seasonal scale variation. The source CO2 identified based on diurnal variation incorporated both early morning and late afternoon sample; whereas, the source CO2 identified based on seasonal variation included only afternoon samples. Thus, it is evident from the study that sampling timing is one of the important factors while characterizing the composition of end member source CO2 for a particular station. The difference in delta C-13 value of source CO2 obtained based on both diurnal and seasonal variation might be due to possible contribution from cement industry along with fossil fuel / biomass burning as predominant sources for the station along with differential meteorological conditions prevailed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Significant changes are reported in extreme rainfall characteristics over India in recent studies though there are disagreements on the spatial uniformity and causes of trends. Based on recent theoretical advancements in the Extreme Value Theory (EVT), we analyze changes in extreme rainfall characteristics over India using a high-resolution daily gridded (1 degrees latitude x 1 degrees longitude) dataset. Intensity, duration and frequency of excess rain over a high threshold in the summer monsoon season are modeled by non-stationary distributions whose parameters vary with physical covariates like the El-Nino Southern Oscillation index (ENSO-index) which is an indicator of large-scale natural variability, global average temperature which is an indicator of human-induced global warming and local mean temperatures which possibly indicate more localized changes. Each non-stationary model considers one physical covariate and the best chosen statistical model at each rainfall grid gives the most significant physical driver for each extreme rainfall characteristic at that grid. Intensity, duration and frequency of extreme rainfall exhibit non-stationarity due to different drivers and no spatially uniform pattern is observed in the changes in them across the country. At most of the locations, duration of extreme rainfall spells is found to be stationary, while non-stationary associations between intensity and frequency and local changes in temperature are detected at a large number of locations. This study presents the first application of nonstationary statistical modeling of intensity, duration and frequency of extreme rainfall over India. The developed models are further used for rainfall frequency analysis to show changes in the 100-year extreme rainfall event. Our findings indicate the varying nature of each extreme rainfall characteristic and their drivers and emphasize the necessity of a comprehensive framework to assess resulting risks of precipitation induced flooding. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Detailed pedofacies characterization along-with lithofacies investigations of the Mio-Pleistocene Siwalik sediments exposed in the Ramnagar sub-basin have been studied so as to elucidate variability in time and space of fluvial processes and the role of intra- and extra-basinal controls on fluvial sedimentation during the evolution of the Himalayan foreland basin (HFB). Dominance of multiple, moderately to strongly developed palaeosol assemblages during deposition of Lower Siwalik (similar to 12-10.8 Ma) sediments suggest that the HFB was marked by Upland set-up of Thomas et al. (2002). Activity of intra-basinal faults on the uplands and deposition of terminal fans at different times caused the development of multiple soils. Further, detailed pedofacies along-with lithofacies studies indicate prevalence of stable tectonic conditions and development of meandering streams with broad floodplains. However, the Middle Siwalik (similar to 10.8-4.92 Ma) sub-group is marked by multistoried sandstones and minor mudstone and mainly weakly developed palaeosols, indicating deposition by large braided rivers in the form of megafans in a Lowland set-up of Thomas et al. (2002). Significant change in nature and size of rivers from the Lower to Middle Siwalik at similar to 10 Ma is found almost throughout of the basin from Kohat Plateau (Pakistan) to Nepal because the Himalayan orogeny witnessed its greatest tectonic upheaval at this time leading to attainment of great heights by the Himalaya, intensification of the monsoon, development of large rivers systems and a high rate of sedimentation, hereby a major change from the Upland set-up to the Lowland set-up over major parts of the HFB. An interesting geomorphic environmental set-up prevailed in the Ramnagar sub-basin during deposition of the studied Upper Siwalik (similar to 4.92 to <1.68 Ma) sediments as observed from the degree of pedogenesis and the type of palaeosols. In general, the Upper Siwalik sub-group in the Ramnagar sub-basin is subdivided from bottom to top into the Purmandal sandstone (4.92-4.49 Ma), Nagrota (4.49-1.68 Ma) and Boulder Conglomerate (<1.68 Ma) formations on the basis of sedimentological characters and change in dominant lithology. Presence of mudstone, a few thin gravel beds and dominant sandstone lithology with weakly to moderately developed palaeosols in the Purmandal sandstone Fm. indicates deposition by shallow braided fluvial streams. The deposition of mudstone dominant Nagrota Fm. with moderately to some well developed palaeosols and a zone of gleyed palaeosols with laminated mudstones and thin sandstones took place in an environment marked by numerous small lakes, water-logged regions and small streams in an environment just south of the Piedmont zone, perhaps similar to what is happening presently in the Upland region/the Upper Gangetic plain. This area is locally called the `Trai region' (Pascoe, 1964). Deposition of Boulder Conglomerate Fm. took place by gravelly braided river system close to the Himalayan Ranges. Activity along the Main Boundary Fault led to progradation of these environments distal-ward and led to development of on the whole a coarsening upward sequence. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Present study had documented total mercury levels in six commonly consumed fish species, and performed across-sectional study on local residents to gauge their intake of fish (via dietary survey) and mercury exposure (via hair biomarker analyses). Mean total mercury content in edible composites of locally-caught fishes (topse, hilsa, mackerel, topse, sardinella, khoira) was low and ranged from 0.01 to 0.11 mu g g(-1) mercury, dry weight. In a cross-sectional study of 58 area residents, the mercury content in hair ranged from 0.25 to 1.23 mu g g(-1), with a mean of 0.65 +/- 0.23 mu g g(-1), Flair mercury level was not influenced by gender, age, or occupation. Mean number of meals consumed per week was 3.1 +/- 1.1, and all participants consumed at least one fish meal per week. When related to fish consumption, a significant positive association was found between number of fish meals consumed per week and hair mercury levels.