991 resultados para Polymorphonuclear Leukocytes
Resumo:
Leprosy is a chronic inflammatory disease caused by Mycobacterium leprae. The human response to this pathogen exhibits intriguing aspects which are up to now not well understood. The present study discusses the probable mechanisms involved in T cell-specific unresponsiveness observed in lepromatous patients. Analysis of the cytokine profile either in blood leukocytes or in skin specimens taken from leprosy lesions indicates that some parameters of Th1 immune response are present in lepromatous patients under reactional states
Resumo:
Fractures are the feared consequences of osteoporosis and fractures of the proximal femur (FPF) are those that involve the highest morbidity and mortality. Thus far, evaluation of bone mineral density (BMD) is the best way to determine the risk of fracture. Genetic inheritance, in turn, is one of the major determinants of BMD. A correlation between different genotypes of the vitamin D receptor (VDR) and BMD has been recently reported. On this basis, we decided to determine the importance of the determination of VDR genotype in the presence of an osteoporotic FPF in a Brazilian population. We studied three groups: group I consisted of 73 elderly subjects older than 65 years (78.5 ± 7.2 years) hospitalized for nonpathological FPF; group II consisted of 50 individuals older than 65 years (72.9 ± 5.2 years) without FPF and group III consisted of 98 young normal Brazilian individuals aged 32.6 ± 6.6 years (mean ± SD). Analysis of VDR gene polymorphism by restriction fragment length polymorphism (RFLP) was performed by PCR amplification followed by BsmI digestion of DNA isolated from peripheral leukocytes. The genotype distribution in group I was 20.5% BB, 42.5% Bb and 37% bb and did not differ significantly from the values obtained for group II (16% BB, 36% Bb and 48% bb) or for group III (10.2% BB, 47.6% Bb and 41.8% bb). No differences in genotype distribution were observed between sexes or between the young and elderly groups. We conclude that determination of VDR polymorphism is of no practical use for the prediction of FPF. Other nongenetic factors probably start to affect bone mass, the risk to fall and consequently the occurrence of osteoporotic fractures with advancing age.
Resumo:
P-selectin glycoprotein ligand-1 (PSGL-1) is a dimeric mucin-like 120-kDa glycoprotein on leukocyte surfaces that binds to P- and L-selectin and promotes cell adhesion in the inflammatory response. The extreme amino terminal extracellular domain of PSGL-1 is critical for these interactions, based on site-directed mutagenesis, blocking monoclonal antibodies, and biochemical analyses. The current hypothesis is that for high affinity interactions with P-selectin, PSGL-1 must contain O-glycans with a core-2 branched motif containing the sialyl Lewis x antigen (NeuAca2®3Galß1®4[Fuca1®3]GlcNAcß1®R). In addition, high affinity interactions require the co-expression of tyrosine sulfate on tyrosine residues near the critical O-glycan structure. This review addresses the biochemical evidence for this hypothesis and the evidence that PSGL-1 is an important in vivo ligand for cell adhesion.
Resumo:
Ablation of host submaxillary glands modifies Ehrlich tumor growth and tumor-infiltrating leukocytes, possibly by modifications in the serum level of growth factors produced by this gland. To extend this research, 7-month-old male EPM-1 mice (N = 30) were divided into two groups: 1) inoculated with tumor cells previously incubated with submaxillary salivary gland extract (SGE) in PBS for 30 min at 37%; 2) inoculated with tumor cells previously incubated with PBS, under the same conditions. Animals were inoculated into the footpad with 40 µl of a suspension containing 4.5 x 107 tumor cells/ml, and footpad thickness was measured daily for 10 days. Sections and smears of tumor cells were prepared from the tumor mass to determine mitosis frequency, percent of tumor cells immunopositive to nerve (NGF) and epidermal (EGF) growth factors and percent of tumor-infiltrating leukocytes. The incubation of tumor cells with SGE produced a tumor reduction of about 30% in size (P<0.01). This effect was not related to loss of cell viability during incubation, but a 33% increase (P<0.05) in the percentage of dead or dying tumor cells and a 15% increase in the percent of NGF/EGF-positive tumor cells (P<0.01) were observed in vivo at the end of experiment. Tumor-infiltrating lymphocytes and mitosis frequency did not differ between groups. These data suggest a direct effect of factors present in SGE on tumor cells, which induce degeneration of tumor cells.
Resumo:
Fatty acids have various effects on immune and inflammatory responses, acting as intracellular and intercellular mediators. Polyunsaturated fatty acids (PUFAs) of the omega-3 family have overall suppressive effects, inhibiting lymphocyte proliferation, antibody and cytokine production, adhesion molecule expression, natural killer cell activity and triggering cell death. The omega-6 PUFAs have both inhibitory and stimulatory effects. The most studied of these is arachidonic acid that can be oxidized to eicosanoids, such as prostaglandins, leukotrienes and thromboxanes, all of which are potent mediators of inflammation. Nevertheless, it has been found that many of the effects of PUFA on immune and inflammatory responses are not dependent on eicosanoid generation. Fatty acids have also been found to modulate phagocytosis, reactive oxygen species production, cytokine production and leukocyte migration, also interfering with antigen presentation by macrophages. The importance of fatty acids in immune function has been corroborated by many clinical trials in which patients show improvement when submitted to fatty acid supplementation. Several mechanisms have been proposed to explain fatty acid modulation of immune response, such as changes in membrane fluidity and signal transduction pathways, regulation of gene transcription, protein acylation, and calcium release. In this review, evidence is presented to support the proposition that changes in cell metabolism also play an important role in the effect of fatty acids on leukocyte functioning, as fatty acids regulate glucose and glutamine metabolism and mitochondrial depolarization.
Resumo:
Familial hypercholesterolemia (FH) is a metabolic disorder inherited as an autosomal dominant trait characterized by an increased plasma low-density lipoprotein (LDL) level. The disease is caused by several different mutations in the LDL receptor gene. Although early identification of individuals carrying the defective gene could be useful in reducing the risk of atherosclerosis and myocardial infarction, the techniques available for determining the number of the functional LDL receptor molecules are difficult to carry out and expensive. Polymorphisms associated with this gene may be used for unequivocal diagnosis of FH in several populations. The aim of our study was to evaluate the genotype distribution and relative allele frequencies of three polymorphisms of the LDL receptor gene, HincII1773 (exon 12), AvaII (exon 13) and PvuII (intron 15), in 50 unrelated Brazilian individuals with a diagnosis of heterozygous FH and in 130 normolipidemic controls. Genomic DNA was extracted from blood leukocytes by a modified salting-out method. The polymorphisms were detected by PCR-RFLP. The FH subjects showed a higher frequency of A+A+ (AvaII), H+H+ (HincII1773) and P1P1 (PvuII) homozygous genotypes when compared to the control group (P<0.05). In addition, FH probands presented a high frequency of A+ (0.58), H+ (0.61) and P1 (0.78) alleles when compared to normolipidemic individuals (0.45, 0.45 and 0.64, respectively). The strong association observed between these alleles and FH suggests that AvaII, HincII1773 and PvuII polymorphisms could be useful to monitor the inheritance of FH in Brazilian families.
Resumo:
Metastasis is a multistep cascade initiated when malignant cells penetrate the tissue surrounding the primary tumor and enter the bloodstream. Classic studies indicated that blood platelets form complexes around tumor cells in the circulation and facilitate metastases. In other work, the anticoagulant drug heparin diminished metastasis in murine models, as well is in preliminary human studies. However, attempts to follow up the latter observation using vitamin K antagonists failed, indicating that the primary mechanism of heparin action was unrelated to its anticoagulant properties. Other studies showed that the overexpression of sialylated fucosylated glycans in human carcinomas is associated with a poor prognosis. We have now brought all these observations together into one mechanistic explanation, which has therapeutic implications. Carcinoma cells expressing sialylated fucosylated mucins can interact with platelets, leukocytes and endothelium via the selectin family of cell adhesion molecules. The initial organ colonization of intravenously injected carcinoma cells is attenuated in P-selectin-deficient mice, in mice receiving tumor cells pretreated with O-sialoglycoprotease (to selectively remove mucins from cell surfaces), or in mice receiving a single dose of heparin prior to tumor cell injection. In each case, we found that formation of a platelet coating on cancer cells was impeded, allowing increased access of leukocytes to the tumor cells. Several weeks later, all animals showed a decrease in the extent of established metastasis, indicating a long-lasting effect of the short-term intervention. The absence of obvious synergism amongst the three treatments suggests that they all act via a common pathway. Thus, a major mechanism of heparin action in cancer may be inhibition of P-selectin-mediated platelet coating of tumor cells during the initial phase of the metastatic process. We therefore suggest that heparin use in cancer be re-explored, specifically during the time interval between initial visualization of a primary tumor until just after definitive surgical removal.
Resumo:
Patients with gastric cancer have a variety of immunological abnormalities. In the present study the lymphocytes and their subsets were determined in the peripheral blood of patients with gastric cancer (N = 41) both before and after surgical treatment. The percent of helper/inducer CD4 T cells (43.6 ± 8.9) was not different after tumor resection (43.6 ± 8.2). The percent of the cytotoxic CD8+ T cell population decreased significantly, whether patients were treated surgically (27.2 ± 5.8%, N = 20) or not (27.3 ± 7.3%, N = 20) compared to individuals with inflammatory disease (30.9 ± 7.5%) or to healthy individuals (33.2 ± 7.6%). The CD4/CD8 ratio consequently increased in the group of cancer patients. The peripheral blood lymphocytes of gastric cancer patients showed reduced responsiveness to mitogens. The defective blastogenic response of the lymphocytes was not associated with the production of transforming growth factor beta (TGF-ß) since the patients with cancer had reduced production of TGF-ß1 (269 ± 239 pg/ml, N = 20) in comparison to the normal individuals (884 ± 175 pg/ml, N = 20). These results indicate that the immune response of gastric cancer patients was not significantly modified by surgical treatment when evaluated four weeks after surgery and that the immunosuppression observed was not due to an increase in TGF-ß1 production by peripheral leukocytes.
Resumo:
We investigated kidney and lung alterations caused by intercellular adhesion molecule type 1 (ICAM-1) blockade after ischemia and reperfusion of hind limb skeletal muscles. Rats were submitted to ligature of the infrarenal aorta for 6 h. The animals were randomized into three groups of 6 rats each: group I, sacrificed after ischemia; group II, reperfusion for 24 h, and group III, reperfusion for 24 h after receiving monoclonal anti-ICAM-1 antibodies. At the end of the experiment, blood samples were collected for creatinine, lactate dehydrogenase, creatine phosphokinase, potassium, pH and leukocyte counts. Samples were taken from the muscles of the hind limbs and from the kidneys and lungs for histological analysis and measurement of the neutrophil infiltrate by myeloperoxidase staining. The groups did not differ significantly with regard to the laboratory tests. There were no major histological alterations in the kidneys. An intense neutrophil infiltrate in the lungs, similar in all groups, was detected. Myeloperoxidase determination showed that after reperfusion there was significantly less retention of polymorphonuclear neutrophils in the muscles (352 ± 70 vs 1451 ± 235 × 10² neutrophils/mg; P<0.01) and in the kidneys (526 ± 89 vs 852 ± 73 × 10² neutrophils/mg; P<0.01) of the animals that received anti-ICAM-1 before perfusion compared to the group that did not. The use of anti-ICAM-1 antibodies in this experimental model minimized neutrophil influx, thus reducing the inflammatory process, in the muscles and kidneys after ischemia and reperfusion of the hind limbs.
Resumo:
We infected NIH germ-free female mice with Helicobacter trogontum, a recently described intestinal bacterium of rats, in order to study the lesions it induced in the liver of this host. Fifteen mice were challenged with a single dose of H. trogontum (test group) and killed 6, 12 and 18 months after inoculation (5 animals/group). Nine animals were challenged with 0.85% saline alone (control group) and killed at the same times. Fragments from the liver, cecum and colon were obtained for microbiologic and histologic examination. Stool samples were also collected. H. trogontum was detected in the cecum, colon and/or stool samples of all test mice. As expected, the bacterium was not isolated from any specimen obtained from the control animals. On the other hand, although we could not cultivate the bacterium from the liver, 13 test animals (86.7%) presented histological changes in this organ. The 6-month group presented infiltration of mononuclear and polymorphonuclear cells in the hepatic parenchyma and the two other groups presented foci of mononuclear cells. The results suggest that H. trogontum can elicit a hepatic inflammatory response in mice since the only difference between control and test animals was the presence of H. trogontum in the latter. This result, together with the growing number of related reports in the literature, reinforces the possible role of Helicobacter infection in the pathogenesis of hepatobiliary diseases.
Resumo:
Chemokines are important chemotactic cytokines that play a fundamental role in the trafficking of leukocytes to sites of inflammation. They are also potent cell-activating factors, inducing cytokine and histamine release and free radical production, a fact that makes them particularly important in the pathogenesis of allergic inflammation. The action of chemokines is regulated at the level of agonist production and processing as well as at the level of receptor expression and coupling. Therefore, an analysis of the ligands must necessarily consider receptors. Eosinophils are target cells involved in the allergic inflammatory response since they are able to release a wide variety of mediators including CC and CXC chemokines and express their receptors. These mediators could damage the airway epithelial cells and might be important to stimulate other cells inducing an amplification of the allergic response. This review focuses on recently emerging data pertaining to the importance of chemokines and chemokine receptors in promoting eosinophil activation and migration during the allergic inflammatory process. The analysis of the function of eosinophils and their chemokine receptors during allergic inflammation might be a good approach to understanding the determinants of asthma severity and to developing novel therapies.
Resumo:
The actin cytoskeleton is a dynamic structure that determines cell shape. Actin turnover is mandatory for migration in normal and malignant cells. In epithelial cancers invasion is frequently accompanied by epithelial to mesenchymal transition (EMT). In EMT, cancer cells acquire a migratory phenotype through transcriptional reprogramming. EMT requires substantial re-organization of actin. During the past decade, new actin regulating proteins have been discovered. Among these are members of the formin family. To study formin expression in tissues and cells, antibodies for detection of formin proteins FMNL1 (Formin-like protein 1), FMNL2 (Formin-like protein 2) and FHOD1 (Formin homology 2 domain containing protein 1) were used. The expression of formins was characterized in normal tissues and selected cancers using immunohistochemistry. The functional roles of formins were studied in cancer cell lines. We found that FMNL2 is widely expressed. It is a filopodial component in cultured melanoma cells. In clinical melanoma, FMNL2 expression has prognostic significance. FHOD1 is a formin expressed in mesenchymal cell types. FHOD1 expression is increased in oral squamous cell carcinoma (SCC) EMT. Importantly, FHOD1 participates in invasion of cultured oral SCC cells. FMNL1 expression is low in normal epithelia, but high in leukocytes and smooth muscle cells. Expression of FMNL1 can be found in carcinoma; we detected FMNL1 expressing cells in basal type of breast cancer. Our results indicate that formins are differentially expressed in normal tissues and that their expression may shift in cancer. Functionally FMNL2 and FHOD1 participate in processes related to cancer progression. Studying formins is increasingly important since they are potential drug targets.
Resumo:
Toxic cyanobacteria in drinking water supplies can cause serious public health problems. In the present study we analyzed the time course of changes in lung histology in young and adult male Swiss mice injected intraperitoneally (ip) with a cyanobacterial extract containing the hepatotoxic microcystins. Microcystins are cyclical heptapeptides quantified by ELISA method. Ninety mice were divided into two groups. Group C received an injection of saline (300 µl, ip) and group Ci received a sublethal dose of microcystins (48.2 µg/kg, ip). Mice of the Ci group were further divided into young (4 weeks old) and adult (12 weeks old) animals. At 2 and 8 h and at 1, 2, 3, and 4 days after the injection of the toxic cyanobacterial extract, the mice were anesthetized and the trachea was occluded at end-expiration. The lungs were removed en bloc, fixed, sectioned, and stained with hematoxylin-eosin. The percentage of the area of alveolar collapse and the number of polymorphonuclear (PMN) and mononuclear cell infiltrations were determined by point counting. Alveolar collapse increased from C to all Ci groups (123 to 262%) independently of time, reaching a maximum value earlier in young than in adult animals. The amount of PMN cells increased with time of the lesion (52 to 161%). The inflammatory response also reached the highest level earlier in young than in adult mice. After 2 days, PMN levels remained unchanged in adult mice, while in young mice the maximum number was observed at day 1 and was similar at days 2, 3, and 4. We conclude that the toxins and/or other cyanobacterial compounds probably exert these effects by reaching the lung through the blood stream after ip injection.
Resumo:
The anti-inflammatory effects of long-term ethanol intoxication were determined during ethanol treatment and withdrawal on the basis of neutrophil and eosinophil migration, hind paw edema and mast cell degranulation. Male Wistar rats (180-200 g, around 2 months of age) were exposed to increasing concentrations of ethanol vapor over a 10-day period. One group was evaluated immediately after exposure (treated group - intoxicated), and another was studied 7 h later (withdrawal group). Ethanol inhalation treatment significantly inhibited carrageenan- (62% for the intoxicated group, N = 5, and 35% for the withdrawal group, N = 6) and dextran-induced paw edema (32% for intoxicated rats and 26% for withdrawal rats, N = 5 per group). Ethanol inhalation significantly reduced carrageenan-induced neutrophil migration (95% for intoxicated rats and 41% for withdrawn rats, N = 6 per group) into a subcutaneous 6-day-old air pouch, and Sephadex-induced eosinophil migration to the rat peritoneal cavity (100% for intoxicated rats and 64% for withdrawn rats, N = 6 per group). A significant decrease of mast cell degranulation was also demonstrated (control, 82%; intoxicated, 49%; withdrawn, 51%, N = 6, 6 and 8, respectively). Total leukocyte and neutrophil counts in venous blood increased significantly during the 10 days of ethanol inhalation (leukocytes, 13, 27 and 40%; neutrophils, 42, 238 and 252%, respectively, on days 5, 9 and 10, N = 7, 6 and 6). The cell counts decreased during withdrawal, but were still significantly elevated (leukocytes, 10%; neutrophils, 246%, N = 6). These findings indicate that both the cellular and vascular components of the inflammatory response are compromised by long-term ethanol intoxication and remain reduced during the withdrawal period.
Resumo:
Extracellular matrix proteins and cell adhesion receptors (integrins) play essential roles in the regulation of cell adhesion and migration. Interactions of integrins with the extracellular matrix proteins lead to phosphorylation of several intracellular proteins such as focal adhesion kinase, activating different signaling pathways responsible for the regulation of a variety of cell functions, including cytoskeleton mobilization. Once leukocytes are guided to sites of infection, inflammation, or antigen presentation, integrins can participate in the initiation, maintenance, or termination of the immune and inflammatory responses. The modulation of neutrophil activation through integrin-mediated pathways is important in the homeostatic control of the resolution of inflammatory states. In addition, during recirculation, T lymphocyte movement through distinct microenvironments is mediated by integrins, which are critical for cell cycle, differentiation and gene expression. Disintegrins are a family of low-molecular weight, cysteine-rich peptides first identified in snake venom, usually containing an RGD (Arg-Gly-Asp) motif, which confers the ability to selectively bind to integrins, inhibiting integrin-related functions in different cell systems. In this review we show that, depending on the cell type and the microenvironment, disintegrins are able to antagonize the effects of integrins or to act agonistically by activating integrin-mediated signaling. Disintegrins have proven useful as tools to improve the understanding of the molecular events regulated by integrin signaling in leukocytes and prototypes in order to design therapies able to interfere with integrin-mediated effects.