950 resultados para Points and lines
Resumo:
The recent discovery that vitamin E (VE) regulates gene activity at the transcriptional level indicates that VE may exert part of its biological effects by mechanisms which may be independent of its well-recognised antioxidant function. The objective of this study was the identification of hepatic vitamin E-sensitive genes and examination of the effects of VE on their corresponding biological endpoints. Two groups of male rats were randomly assigned to either a VE-sufficient diet or to a control diet deficient in VE for 290 days. High-density oligonucleotide microarrays comprising over 7000 genes were used to assess the transcriptional response of the liver. Differential gene expression was monitored over a period of 9 months, at four different time-points, and rats were individually profiled. This experimental strategy identified several VE-sensitive genes, which were chronically altered by dietary VE. VE supplementation down-regulated scavenger receptor CD36, coagulation factor IX and 5-alpha-steroid reductase type 1 mRNA levels while hepatic gamma glutamyl-cysteinyl synthetase was significantly up-regulated. Measurement of the corresponding biological endpoints such as activated partial thromboplastin time, plasma dihydrotestosterone and hepatic glutathione substantiated the gene chip data which indicated that dietary VE plays an important role in a range of metabolic processes within the liver. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
In this paper, we Study the invariant intervals, the globally attractivity of the two equilibrium points, and the oscillatory behavior of tile solutions of the difference equation x(n =) ax(n-1) - bx(n-2)/c + x(n-2), n = 1,2,......, where a, b. c > 0. (C) 2003 Elsevier Inc. All rights reserved.
Resumo:
In this Paper, we study the invariant intervals, the global attractivity of the equilibrium points, and the asymptotic behavior of the solutions of the difference equation x(n) = ax(n-1) + bx(n-2) / c + dx(n-1)x(n-2), n =1, 2, ..., where a greater than or equal to 0, b, c, d > 0. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
A generalized or tunable-kernel model is proposed for probability density function estimation based on an orthogonal forward regression procedure. Each stage of the density estimation process determines a tunable kernel, namely, its center vector and diagonal covariance matrix, by minimizing a leave-one-out test criterion. The kernel mixing weights of the constructed sparse density estimate are finally updated using the multiplicative nonnegative quadratic programming algorithm to ensure the nonnegative and unity constraints, and this weight-updating process additionally has the desired ability to further reduce the model size. The proposed tunable-kernel model has advantages, in terms of model generalization capability and model sparsity, over the standard fixed-kernel model that restricts kernel centers to the training data points and employs a single common kernel variance for every kernel. On the other hand, it does not optimize all the model parameters together and thus avoids the problems of high-dimensional ill-conditioned nonlinear optimization associated with the conventional finite mixture model. Several examples are included to demonstrate the ability of the proposed novel tunable-kernel model to effectively construct a very compact density estimate accurately.
Resumo:
We investigated the effect of morphological differences on neuronal firing behavior within the hippocampal CA3 pyramidal cell family by using three-dimensional reconstructions of dendritic morphology in computational simulations of electrophysiology. In this paper, we report for the first time that differences in dendritic structure within the same morphological class can have a dramatic influence on the firing rate and firing mode (spiking versus bursting and type of bursting). Our method consisted of converting morphological measurements from three-dimensional neuroanatomical data of CA3 pyramidal cells into a computational simulator format. In the simulation, active channels were distributed evenly across the cells so that the electrophysiological differences observed in the neurons would only be due to morphological differences. We found that differences in the size of the dendritic tree of CA3 pyramidal cells had a significant qualitative and quantitative effect on the electrophysiological response. Cells with larger dendritic trees: (1) had a lower burst rate, but a higher spike rate within a burst, (2) had higher thresholds for transitions from quiescent to bursting and from bursting to regular spiking and (3) tended to burst with a plateau. Dendritic tree size alone did not account for all the differences in electrophysiological responses. Differences in apical branching, such as the distribution of branch points and terminations per branch order, appear to effect the duration of a burst. These results highlight the importance of considering the contribution of morphology in electrophysiological and simulation studies.
Resumo:
Assessment of changes in precipitation (P) as a function of percentiles of surface temperature (T) and 500 hPa vertical velocity (ω) are presented, considering present-day simulations and observational estimates from the Global Precipitation Climatology Project (GPCP) combined with the European Centre for Medium-range Weather Forecasts Interim reanalysis (ERA Interim). There is a tendency for models to overestimate P in the warm, subsiding regimes compared to GPCP, in some cases by more than 100%, while many models underestimate P in the moderate temperature regimes. Considering climate change projections between 1980–1999 and 2080–2099, responses in P are characterised by dP/dT ≥ 4%/K over the coldest 10–20% of land points and over warm, ascending ocean points while P declines over the warmest, descending regimes (dP/dT ∼ − 4%/K for model ensemble means). The reduced Walker circulation limits this contrasting dP/dT response in the tropical wet and dry regimes only marginally. Around 70% of the global surface area exhibits a consistent sign for dP/dT in at least 6 out of a 7-member model ensemble when considering P composites in terms of dynamic regime.
Resumo:
The performance of flood inundation models is often assessed using satellite observed data; however these data have inherent uncertainty. In this study we assess the impact of this uncertainty when calibrating a flood inundation model (LISFLOOD-FP) for a flood event in December 2006 on the River Dee, North Wales, UK. The flood extent is delineated from an ERS-2 SAR image of the event using an active contour model (snake), and water levels at the flood margin calculated through intersection of the shoreline vector with LiDAR topographic data. Gauged water levels are used to create a reference water surface slope for comparison with the satellite-derived water levels. Residuals between the satellite observed data points and those from the reference line are spatially clustered into groups of similar values. We show that model calibration achieved using pattern matching of observed and predicted flood extent is negatively influenced by this spatial dependency in the data. By contrast, model calibration using water elevations produces realistic calibrated optimum friction parameters even when spatial dependency is present. To test the impact of removing spatial dependency a new method of evaluating flood inundation model performance is developed by using multiple random subsamples of the water surface elevation data points. By testing for spatial dependency using Moran’s I, multiple subsamples of water elevations that have no significant spatial dependency are selected. The model is then calibrated against these data and the results averaged. This gives a near identical result to calibration using spatially dependent data, but has the advantage of being a statistically robust assessment of model performance in which we can have more confidence. Moreover, by using the variations found in the subsamples of the observed data it is possible to assess the effects of observational uncertainty on the assessment of flooding risk.
Resumo:
The task of this paper is to develop a Time-Domain Probe Method for the reconstruction of impenetrable scatterers. The basic idea of the method is to use pulses in the time domain and the time-dependent response of the scatterer to reconstruct its location and shape. The method is based on the basic causality principle of timedependent scattering. The method is independent of the boundary condition and is applicable for limited aperture scattering data. In particular, we discuss the reconstruction of the shape of a rough surface in three dimensions from time-domain measurements of the scattered field. In practise, measurement data is collected where the incident field is given by a pulse. We formulate the time-domain fieeld reconstruction problem equivalently via frequency-domain integral equations or via a retarded boundary integral equation based on results of Bamberger, Ha-Duong, Lubich. In contrast to pure frequency domain methods here we use a time-domain characterization of the unknown shape for its reconstruction. Our paper will describe the Time-Domain Probe Method and relate it to previous frequency-domain approaches on sampling and probe methods by Colton, Kirsch, Ikehata, Potthast, Luke, Sylvester et al. The approach significantly extends recent work of Chandler-Wilde and Lines (2005) and Luke and Potthast (2006) on the timedomain point source method. We provide a complete convergence analysis for the method for the rough surface scattering case and provide numerical simulations and examples.
Resumo:
The nature of private commercial real estate markets presents difficulties for monitoring market performance. Assets are heterogeneous and spatially dispersed, trading is infrequent and there is no central marketplace in which prices and cash flows of properties can be easily observed. Appraisal based indices represent one response to these issues. However, these have been criticised on a number of grounds: that they may understate volatility, lag turning points and be affected by client influence issues. Thus, this paper reports econometrically derived transaction based indices of the UK commercial real estate market using Investment Property Databank (IPD) data, comparing them with published appraisal based indices. The method is similar to that presented by Fisher, Geltner, and Pollakowski (2007) and used by Massachusett, Institute of Technology (MIT) on National Council of Real Estate Investment Fiduciaries (NCREIF) data, although it employs value rather than equal weighting. The results show stronger growth from the transaction based indices in the run up to the peak in the UK market in 2007. They also show that returns from these series are more volatile and less autocorrelated than their appraisal based counterparts, but, surprisingly, differences in turning points were not found. The conclusion then debates the applications and limitations these series have as measures of market performance.
Resumo:
This dataset is an evolving collection of chess endgame record scenarios illustrating the extremes of the game including the deepest positions in various metrics. Optimal lines in consonant strategies are given and annotated. The two attached files are (a) a pgn file of the chess positions and lines, and (b) an annotated version of the pgn file.
Resumo:
Imagery registration is a fundamental step, which greatly affects later processes in image mosaic, multi-spectral image fusion, digital surface modelling, etc., where the final solution needs blending of pixel information from more than one images. It is highly desired to find a way to identify registration regions among input stereo image pairs with high accuracy, particularly in remote sensing applications in which ground control points (GCPs) are not always available, such as in selecting a landing zone on an outer space planet. In this paper, a framework for localization in image registration is developed. It strengthened the local registration accuracy from two aspects: less reprojection error and better feature point distribution. Affine scale-invariant feature transform (ASIFT) was used for acquiring feature points and correspondences on the input images. Then, a homography matrix was estimated as the transformation model by an improved random sample consensus (IM-RANSAC) algorithm. In order to identify a registration region with a better spatial distribution of feature points, the Euclidean distance between the feature points is applied (named the S criterion). Finally, the parameters of the homography matrix were optimized by the Levenberg–Marquardt (LM) algorithm with selective feature points from the chosen registration region. In the experiment section, the Chang’E-2 satellite remote sensing imagery was used for evaluating the performance of the proposed method. The experiment result demonstrates that the proposed method can automatically locate a specific region with high registration accuracy between input images by achieving lower root mean square error (RMSE) and better distribution of feature points.
Resumo:
Technical actions performed by two groups of judokas who won medals at World Championships and Olympic Games during the period 1995-2001 were analyzed. In the Super Elite group (n = 17) were the best athletes in each weight category. The Elite group (n = 16) were medal winners who were not champions and did not win more than three medals. Super Elite judokas used a greater number of throwing techniques which resulted in scores, even when expressed relative to the total number of matches performed, and these techniques were applied in more directions than those of Elite judokas. Further, the number of different throwing techniques and the variability of directions in which techniques were applied were significantly correlated with number of wins and the number of points and ippon scored. Thus, a greater number of throwing techniques and use of directions for attack seem to be important in increasing unpredictability during judo matches.
Resumo:
The importance of the HSO(2) system in atmospheric and combustion chemistry has motivated several works dedicated to the study of associated structures and chemical reactions. Nevertheless controversy still exists in connection with the reaction SH + O(2) -> H + SO(2) and also related to the role of the HSOO isomers in the potential energy surface (PES). Here we report high-level ab initio calculation for the electronic ground state of the HSO(2) system. Energetic, geometric, and frequency properties for the major stationary states of the PES are reported at the same level of calculations:,CASPT2/aug-cc-pV(T+d)Z. This study introduces three new stationary points (two saddle points and one minimum). These structures allow the connection of the skewed HSOOs and the HSO(2) minima defining new reaction paths for SH + O(2) -> H + SO(2) and SH + O(2) -> OH + SO. In addition, the location of the HSOO isomers in the reaction pathways have been clarified.
Resumo:
The shuttle radar topography mission (SRTM), was flow on the space shuttle Endeavour in February 2000, with the objective of acquiring a digital elevation model of all land between 60 degrees north latitude and 56 degrees south latitude, using interferometric synthetic aperture radar (InSAR) techniques. The SRTM data are distributed at horizontal resolution of 1 arc-second (similar to 30m) for areas within the USA and at 3 arc-second (similar to 90m) resolution for the rest of the world. A resolution of 90m can be considered suitable for the small or medium-scale analysis, but it is too coarse for more detailed purposes. One alternative is to interpolate the SRTM data at a finer resolution; it will not increase the level of detail of the original digital elevation model (DEM), but it will lead to a surface where there is the coherence of angular properties (i.e. slope, aspect) between neighbouring pixels, which is an important characteristic when dealing with terrain analysis. This work intents to show how the proper adjustment of variogram and kriging parameters, namely the nugget effect and the maximum distance within which values are used in interpolation, can be set to achieve quality results on resampling SRTM data from 3"" to 1"". We present for a test area in western USA, which includes different adjustment schemes (changes in nugget effect value and in the interpolation radius) and comparisons with the original 1"" model of the area, with the national elevation dataset (NED) DEMs, and with other interpolation methods (splines and inverse distance weighted (IDW)). The basic concepts for using kriging to resample terrain data are: (i) working only with the immediate neighbourhood of the predicted point, due to the high spatial correlation of the topographic surface and omnidirectional behaviour of variogram in short distances; (ii) adding a very small random variation to the coordinates of the points prior to interpolation, to avoid punctual artifacts generated by predicted points with the same location than original data points and; (iii) using a small value of nugget effect, to avoid smoothing that can obliterate terrain features. Drainages derived from the surfaces interpolated by kriging and by splines have a good agreement with streams derived from the 1"" NED, with correct identification of watersheds, even though a few differences occur in the positions of some rivers in flat areas. Although the 1"" surfaces resampled by kriging and splines are very similar, we consider the results produced by kriging as superior, since the spline-interpolated surface still presented some noise and linear artifacts, which were removed by kriging.
Resumo:
We study focal points and Maslov index of a horizontal geodesic gamma : I -> M in the total space of a semi-Riemannian submersion pi : M -> B by determining an explicit relation with the corresponding objects along the projected geodesic pi omicron gamma : I -> B in the base space. We use this result to calculate the focal Maslov index of a (spacelike) geodesic in a stationary spacetime which is orthogonal to a timelike Killing vector field.