976 resultados para Physics, General|Physics, Electricity and Magnetism
Resumo:
This article describes methodology for training teachers in Maths, Physics, Astronomy and Professional subjects in basic and specific computer skills.
Resumo:
The purpose of this work is the development of database of the distributed information measurement and control system that implements methods of optical spectroscopy for plasma physics research and atomic collisions and provides remote access to information and hardware resources within the Intranet/Internet networks. The database is based on database management system Oracle9i. Client software was realized in Java language. The software was developed using Model View Controller architecture, which separates application data from graphical presentation components and input processing logic. The following graphical presentations were implemented: measurement of radiation spectra of beam and plasma objects, excitation function for non-elastic collisions of heavy particles and analysis of data acquired in preceding experiments. The graphical clients have the following functionality of the interaction with the database: browsing information on experiments of a certain type, searching for data with various criteria, and inserting the information about preceding experiments.
Resumo:
This article investigates whether the strength of formal professional relationships between general practitioners (GPs) and specialists (SPs) affects either the health status of patients or their pharmacy costs. To this end, it measures the strength of formal professional relationships between GPs and SPs through the number of shared patients and proxies the patient health status by the number of comorbidities diagnosed and treated. In strong GP–SP relationships, the patient health status is expected to be high, due to efficient care coordination, and the pharmacy costs low, due to effective use of resources. To test these hypotheses and compare the characteristics of the strongest GP–SP connections with those of the weakest, this article concentrates on diabetes—a chronic condition where patient care coordination is likely important. Diabetes generates the largest shared patient cohort in Hungary, with the highest traffic of specialist medication prescriptions. This article finds that stronger ties result in lower pharmacy costs, but not in higher patient health statuses. Key points for decision makers • The number of shared patients may be used to measure the strength of formal professional relationships between general practitioners and specialists. • A large number of shared patients indicates a strong, collaborative tie between general practitioners and specialists, whereas a low number indicates a weak, fragmented tie. • Tie strength does not affect patient health—strong, collaborative ties between general practitioners and specialists do not involve better patient health than weak, fragmented ties. • Tie strength does affect pharmacy costs—strong, collaborative ties between general practitioners and specialists involve significantly lower pharmacy costs than weak, fragmented ties. • Pharmacy costs may be reduced by lowering patient care fragmentation through channelling a general practitioner’s patients to a small number of specialists and increasing collaboration between general practitioner and specialists. • Limited patient choice is financially more beneficial than complete freedom of choice, and no more detrimental to patient health.
Resumo:
This study evaluated school satisfaction as an indicator of dropout risk of students with Emotional Handicaps (EH) and students with Severe Emotional Disturbance (SED). The students attended two different kinds of middle schools in a largely urban school district in South Florida. One hundred eight students in grade 8 (ages 13-16) participated in this study. Participants were administered the National Dropout Prevention Assessment (NDPA). Forty participants with EH and SED attended a special center school. Thirty-one participants with EH and SED attended satellite programs in a regular middle school. Thirty-seven general education participants attended the same regular middle school. Overall school satisfaction scores were generated, as well as three primary factors (school, environment and personal) and 16 subscales (school atmosphere, future income, difficulty level of classwork, teacher relationships, peer relationships, intrinsic interest in classwork, school hours, classwork stress, general attitude towards school, family influence, perceived opportunity for career, future goals, travel distance, leisure time, self-appraisal of performance, and self-esteem).^ Comparison of students with EH and SED revealed that both groups of students were rated at "low risk" of becoming dropouts on the Environmental factor and the Difficulty of Schoolwork subscale. Students with EH were rated at "caution risk" risk on the Travel Distance subscale. Students with SED were rated at "high risk" on this subscale.^ There were no significant differences in school satisfaction and dropout risk between different program delivery models. There were also no significant differences for category of students (EH, SED) by school type (center school, satellite program). All students were rated at "low risk" of dropping out of school.^ There were significant differences between general education students and students with EH and SED attending satellite programs. Students with EH and SED were rated at "caution risk" for dropping out on the Travel Distance and the Leisure Time subscales. Discussion of results, implications for practice and recommendations for further research are included. ^
Resumo:
It has been proposed that dwarf irregular galaxies can be separated into two classes based on their formation mechanism; that they are the result of the collapse of a primordial gas cloud or that they are the product of condensation of gas in the tidal tails of interacting galaxies. Simulations of galaxy interactions indicate that one can differentiate between these two scenarios by the dark matter content, with a low dark matter content indicating a fossil tidal dwarf. The purpose of this dissertation was to explore the dark matter distribution of two dwarf irregular galaxies using optical and neutral atomic hydrogen data. For DDO 210, the method of mass-modelling was used to determine its dark matter. About 64% of the galaxy mass was calculated to be in the form of dark matter and hence it is unlikely to be a fossil tidal dwarf. The method of mass-modelling could not be used for DDO 169 as the galaxy shows evidence of being tidally disrupted and hence, has a disturbed velocity field. Instead, the suggestion that dark matter might be responsible for a pressure anomaly in DDO 169 was tested to determine its dark matter content. According to this method, a pressure anomaly does exist but without a concrete value for the scale-height, it is unclear whether the anomaly is due to the presence of dark matter. Hence one cannot say how much dark matter might actually be present in DDO 169. A rotation curve would be required to do this. ^
Resumo:
The number of students identified as having autism increased by 500% in the past 10 years (United States Government Accountability Office, 2005). All students with disabilities are required to be placed in least restrictive environments and to be given access to the general curriculum in the major subjects of math, reading, writing, and science as mandated by federal legislation such as the Individuals with Disabilities Education Act (IDEA, 2004) and No Child Left Behind (NCLB, 2001). As a result of this legislation, an increasing number of students with autism are being educated in inclusive classrooms. Most studies on general education access and curriculum modifications and/or instructional accommodations center on students with intellectual disabilities (e.g. Soukup, Wehmeyer, Bashinski, & Boviard, 2007; Wehmeyer, Lattin, Lapp-Rincker, & Agran, 2003). Wehmeyer et al. (2003) and Soukup et al. (2007) found included students with intellectual disabilities had more access to the general curriculum than mostly self-contained students. This meant included students were more likely to be working on the general curriculum as mandated by NCLB than those in only self-contained classrooms. This study builds and expands the research of Wehmeyer et al., as well as Soukup et al., by examining how students with autism are given access to the general curriculum through curriculum modifications and instructional accommodations used by general education teachers in three schools. This investigation focused on nine inclusive classrooms for students with autism using a parallel mixed methods design (Newman, Newman, & Newman, 2011). Classroom observations using both an IEP related checklist and field notes, teacher interviews, an archival document review of the Individual Education Plan (IEP) for the selected students with autism were performed. Findings of this study were organized by interview questions and subsequent coding categories. Quantitative data were organized in a nominal scale. Participants asserted that their middle school students with autism functioned well in their classrooms, occasionally exhibiting behavioral differences. Most instructional accommodations on IEPs were being implemented by participants, and participants often provided additional instructional accommodations not mandated by the IEP. The majority of participants credited county workshops for their knowledge of instructional accommodations.
Resumo:
Theoretical research and specific surface area analysis of nitrogen adsorption indicated that a lot of structural micropores exist in sepiolite minerals fibers. However, the microporous size, existing form, and the distribution relationship between microporous structures were not proved yet. In this paper, the section TEM samples of nanofibers were prepared on the basis of the metal embedding and cutting technique, and the inner structure of sepiolite nanofibers was observed by TEM. The results showed that sepiolite fibers have multiplayer structure similar to concentric circles, and many micropores with the size of about 2–5 nm are normal and parallel to the -axis. The reason for the previously mentioned phenomenon was explained by using BET analysis and X-ray diffraction analysis results.
Resumo:
Bismuth selenide (Bi2Se3) nanostructures were synthesized via solvothermal method. The crystallinity of the as-synthesized sample has been analyzed by X-ray diffraction, which shows the formation of rhombohedral Bi2Se3. Electron microscopy examination indicates that the Bi2Se3 nanoparticles have hexagonal flake-like shape. The effect of the synthesis temperature on the morphology of the Bi2Se3 nanostructures has also been investigated. It is found that the particle size increases with the synthesis temperature. Thermoelectric properties of the Bi2Se3 nanostructures were also measured, and the maximum value of dimensionless figure of merit (ZT) of 0.096 was obtained at 523 K.
Resumo:
Membrane-like structure formed by surfactant molecules of didodecyldimethylammonium bromide (DDAB) on both HOPG and gold electrodes were studied with AFM and SPR techniques. The study shows that the thickness of the adsorbed layer of DDAB is strongly dependent on the concentration of the vesicle solution. We have also investigated the adsorption of redox protein, Cytochrome c, on graphite electrode with in situ tapping mode AFM. The protein adsorbs spontaneously onto the electrode covered with an adsorbed phosphate layer and forms a uniform monolayer. The adsorbed protein exhibits a reversible electron transfer at 0.17 V (Ag/AgCI) once the electrode potential has been increased to 0.75V. Using surface plasmon resonance spectroscopy we have measured subtle conformational change in protein, Cyt c, due to electron transfer of a single electron on MPA-coated gold electrode. The electron transfer induced change in the resonant angle is about 0.006 deg., which corresponds to ~ 0.2 A decreases in the thickness. This is consistent with that reduced state is more compact than the oxidized state.
Resumo:
The work is supported in part by NSFC (Grant no. 61172070), IRT of Shaanxi Province (2013KCT-04), EPSRC (Grant no.Ep/1032606/1).
Resumo:
The work is supported in part by NSFC (Grant no. 61172070), IRT of Shaanxi Province (2013KCT-04), EPSRC (Grant no.Ep/1032606/1).
Resumo:
C.-W.W. is supported by a studentship funded by the College of Physical Sciences, University of Aberdeen. M.S.B. acknowledges EPSRC grant NO. EP/I032606/1.
Resumo:
Nonlinear optics is a broad field of research and technology that encompasses subject matter in the field of Physics, Chemistry, and Engineering. It is the branch of Optics that describes the behavior of light in nonlinear media, that is, media in which the dielectric polarization P responds nonlinearly to the electric field E of the light. This nonlinearity is typically only observed at very high light intensities. This area has applications in all optical and electro optical devices used for communication, optical storage and optical computing. Many nonlinear optical effects have proved to be versatile probes for understanding basic and applied problems. Nonlinear optical devices use nonlinear dependence of refractive index or absorption coefficient on the applied field. These nonlinear optical devices are passive devices and are referred to as intelligent or smart materials owing to the fact that the sensing, processing and activating functions required for optical processes are inherent to them which are otherwise separate in dynamic devices.The large interest in nonlinear optical crystalline materials has been motivated by their potential use in the fabrication of all-optical photonic devices. Transparent crystalline materials can exhibit different kinds of optical nonlinearities which are associated with a nonlinear polarization. The choice of the most suitable crystal material for a given application is often far from trivial; it should involve the consideration of many aspects. A high nonlinearity for frequency conversion of ultra-short pulses does not help if the interaction length is strongly limited by a large group velocity mismatch and the low damage threshold limits the applicable optical intensities. Also, it can be highly desirable to use a crystal material which can be critically phasematched at room temperature. Among the different types of nonlinear crystals, metal halides and tartrates have attracted due to their importance in photonics. Metal halides like lead halides have drawn attention because they exhibit interesting features from the stand point of the electron-lattice interaction .These materials are important for their luminescent properties. Tartrate single crystals show many interesting physical properties such as ferroelectric, piezoelectric, dielectric and optical characteristics. They are used for nonlinear optical devices based on their optical transmission characteristics. Among the several tartrate compounds, Strontium tartrate, Calcium tartrate and Cadmium tartrate have received greater attention on account of their ferroelectric, nonlinear optical and spectral characteristics. The present thesis reports the linear and nonlinear aspects of these crystals and their potential applications in the field of photonics.