947 resultados para Phase stability field


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three new MnIII complexes, {[Mn-2(salen)(2)(OCn)](ClO4)}(n) (1), {[Mn-2(salen)(2)(OPh)](ClO4)}(n) (2) and {[Mn-2(salen)(2)(OBz)](ClO4)}(2) (3) (where salen = N,N'-bis(salicylidene)-1,2-diaminoethane dianion, OCn = cinnamate, OPh = phenylacetate and OBz = benzoate), have been synthesized and characterized structurally and magnetically. The crystal structures reveal that all three structures contain syn-anti carboxylatebridged dimeric [Mn-2(salen)(2)(OOCR)](+) cations (OOCR = bridging carboxylate) that are joined together by weak Mn center dot center dot center dot O(phenoxo) interactions to form infinite alternating chain structures in 1 and 2, but the relatively long Mn center dot center dot center dot O(phenoxo) distance [3.621(2)angstrom] in 3 restricts this structure to tetranuclear units. Magnetic studies showed that 1 and 2 exhibited magnetic long-range order at T-N = 4.0 and 4.6 K (T-N = Neel transition temperature), respectively, to give spin-canted antiferromagnetic structures. Antiferromagnetic coupling was also observed in 3 but no peaks were recorded in the field-cooled magnetization (FCM) or zero-field-cooled magnetization (ZFCM) data, indicating that 3 remained paramagnetic down to 2 K. This dominant antiferromagnetic coupling is attributed to the carboxylate bridges. The ferromagnetic coupling expected due to the Mn-O(phenoxo)center dot center dot center dot Mn bridge plays an auxiliary role in the magnetic chain, but is an essential component of the bulk magnetic properties of the material.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neural field models describe the coarse-grained activity of populations of interacting neurons. Because of the laminar structure of real cortical tissue they are often studied in two spatial dimensions, where they are well known to generate rich patterns of spatiotemporal activity. Such patterns have been interpreted in a variety of contexts ranging from the understanding of visual hallucinations to the generation of electroencephalographic signals. Typical patterns include localized solutions in the form of traveling spots, as well as intricate labyrinthine structures. These patterns are naturally defined by the interface between low and high states of neural activity. Here we derive the equations of motion for such interfaces and show, for a Heaviside firing rate, that the normal velocity of an interface is given in terms of a non-local Biot-Savart type interaction over the boundaries of the high activity regions. This exact, but dimensionally reduced, system of equations is solved numerically and shown to be in excellent agreement with the full nonlinear integral equation defining the neural field. We develop a linear stability analysis for the interface dynamics that allows us to understand the mechanisms of pattern formation that arise from instabilities of spots, rings, stripes and fronts. We further show how to analyze neural field models with linear adaptation currents, and determine the conditions for the dynamic instability of spots that can give rise to breathers and traveling waves.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider the Dirichlet and Robin boundary value problems for the Helmholtz equation in a non-locally perturbed half-plane, modelling time harmonic acoustic scattering of an incident field by, respectively, sound-soft and impedance infinite rough surfaces.Recently proposed novel boundary integral equation formulations of these problems are discussed. It is usual in practical computations to truncate the infinite rough surface, solving a boundary integral equation on a finite section of the boundary, of length 2A, say. In the case of surfaces of small amplitude and slope we prove the stability and convergence as A→∞ of this approximation procedure. For surfaces of arbitrarily large amplitude and/or surface slope we prove stability and convergence of a modified finite section procedure in which the truncated boundary is ‘flattened’ in finite neighbourhoods of its two endpoints. Copyright © 2001 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we present comprehensive ground-based and space-based in situ geosynchronous observations of a substorm expansion phase onset on 1 October 2005. The Double Star TC-2 and GOES-12 spacecraft were both located within the substorm current wedge during the substorm expansion phase onset, which occurred over the Canadian sector. We find that an onset of ULF waves in space was observed after onset on the ground by extending the AWESOME timing algorithm into space. Furthermore, a population of low-energy field-aligned electrons was detected by the TC-2 PEACE instrument contemporaneous with the ULF waves in space. These electrons appear to be associated with an enhancement of field-aligned Poynting flux into the ionosphere which is large enough to power visible auroral displays. The observations are most consistent with a near-Earth initiation of substorm expansion phase onset, such as the Near-Geosynchronous Onset (NGO) substorm scenario. A lack of data from further downtail, however, means other mechanisms cannot be ruled out.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A weak instability mode, associated with phase-locked counterpropagating coastal Kelvin waves in horizontal anticyclonic shear, is found in the semigeostrophic (SG) equations for stratified flow in a channel. This SG instability mode approximates a similar mode found in the Euler equations in the limit in which particle-trajectory slopes are much smaller than f/N, where f is the Coriolis frequency and N > f the buoyancy frequency. Though weak under normal parameter conditions, this instability mode is of theoretical interest because its existence accounts for the failure of an Arnol’d-type stability theorem for the SG equations. In the opposite limit, in which the particle motion is purely vertical, the Euler equations allow only buoyancy oscillations with no horizontal coupling. The SG equations, on the other hand, allow a physically spurious coastal “mirage wave,” so called because its velocity field vanishes despite a nonvanishing disturbance pressure field. Counterpropagating pairs of these waves can phase-lock to form a spurious “mirage-wave instability.” Closer examination shows that the mirage wave arises from failure of the SG approximations to be self-consistent for trajectory slopes f/N.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This technique paper describes a novel method for quantitatively and routinely identifying auroral breakup following substorm onset using the Time History of Events and Macroscale Interactions During Substorms (THEMIS) all-sky imagers (ASIs). Substorm onset is characterised by a brightening of the aurora that is followed by auroral poleward expansion and auroral breakup. This breakup can be identified by a sharp increase in the auroral intensity i(t) and the time derivative of auroral intensity i'(t). Utilising both i(t) and i'(t) we have developed an algorithm for identifying the time interval and spatial location of auroral breakup during the substorm expansion phase within the field of view of ASI data based solely on quantifiable characteristics of the optical auroral emissions. We compare the time interval determined by the algorithm to independently identified auroral onset times from three previously published studies. In each case the time interval determined by the algorithm is within error of the onset independently identified by the prior studies. We further show the utility of the algorithm by comparing the breakup intervals determined using the automated algorithm to an independent list of substorm onset times. We demonstrate that up to 50% of the breakup intervals characterised by the algorithm are within the uncertainty of the times identified in the independent list. The quantitative description and routine identification of an interval of auroral brightening during the substorm expansion phase provides a foundation for unbiased statistical analysis of the aurora to probe the physics of the auroral substorm as a new scientific tool for aiding the identification of the processes leading to auroral substorm onset.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using 1D Vlasov drift-kinetic computer simulations, it is shown that electron trapping in long period standing shear Alfven waves (SAWs) provides an efficient energy sink for wave energy that is much more effective than Landau damping. It is also suggested that the plasma environment of low altitude auroral-zone geomagnetic field lines is more suited to electron acceleration by inertial or kinetic scale Alfven waves. This is due to the self-consistent response of the electron distribution function to SAWs, which must accommodate the low altitude large-scale current system in standing waves. We characterize these effects in terms of the relative magnitude of the wave phase and electron thermal velocities. While particle trapping is shown to be significant across a wide range of plasma temperatures and wave frequencies, we find that electron beam formation in long period waves is more effective in relatively cold plasma.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Radar refractivity retrievals have the potential to accurately capture near-surface humidity fields from the phase change of ground clutter returns. In practice, phase changes are very noisy and the required smoothing will diminish large radial phase change gradients, leading to severe underestimates of large refractivity changes (ΔN). To mitigate this, the mean refractivity change over the field (ΔNfield) must be subtracted prior to smoothing. However, both observations and simulations indicate that highly correlated returns (e.g., when single targets straddle neighboring gates) result in underestimates of ΔNfield when pulse-pair processing is used. This may contribute to reported differences of up to 30 N units between surface observations and retrievals. This effect can be avoided if ΔNfield is estimated using a linear least squares fit to azimuthally averaged phase changes. Nevertheless, subsequent smoothing of the phase changes will still tend to diminish the all-important spatial perturbations in retrieved refractivity relative to ΔNfield; an iterative estimation approach may be required. The uncertainty in the target location within the range gate leads to additional phase noise proportional to ΔN, pulse length, and radar frequency. The use of short pulse lengths is recommended, not only to reduce this noise but to increase both the maximum detectable refractivity change and the number of suitable targets. Retrievals of refractivity fields must allow for large ΔN relative to an earlier reference field. This should be achievable for short pulses at S band, but phase noise due to target motion may prevent this at C band, while at X band even the retrieval of ΔN over shorter periods may at times be impossible.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In theory, enrichment of resource in a predator-prey model leads to destabilization of the system, thereby collapsing the trophic interaction, a phenomenon referred to as "the paradox of enrichment". After it was first proposed by Rosenzweig (1971), a number of subsequent studies were carried out on this dilemma over many decades. In this article, we review these theoretical and experimental works and give a brief overview of the proposed solutions to the paradox. The mechanisms that have been discussed are modifications of simple predator-prey models in the presence of prey that is inedible, invulnerable, unpalatable and toxic. Another class of mechanisms includes an incorporation of a ratio-dependent functional form, inducible defence of prey and density-dependent mortality of the predator. Moreover, we find a third set of explanations based on complex population dynamics including chaos in space and time. We conclude that, although any one of the various mechanisms proposed so far might potentially prevent destabilization of the predator-prey dynamics following enrichment, in nature different mechanisms may combine to cause stability, even when a system is enriched. The exact mechanisms, which may differ among systems, need to be disentangled through extensive field studies and laboratory experiments coupled with realistic theoretical models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives A pharmacy Central Intravenous Additives Service (CIVAS) provides ready to use injectable medicines. However, manipulation of a licensed injectable medicine may significantly alter the stability of drug(s) in the final product. The aim of this study was to develop a stability indicating assay for CIVAS produced dobutamine 500 mg in 50 ml dextrose 1% (w/v) prefilled syringes, and to allocate a suitable shelf life. Methods A stability indicating high performance liquid chromatography (HPLC) assay was established for dobutamine. The stability of dobutamine prefilled syringes was evaluated under storage conditions of 4°C (protected from light), room temperature (protected from light), room temperature (exposed to light) and 40°C (protected from light) at various time points (up to 42 days). Results An HPLC method employing a Hypersil column, mobile phase (pH=4.0) consisting of 82:12:6 (v/v/v) 0.05 M KH2PO4:acetonitrile:methanol plus 0.3% (v/v) triethylamine with UV detection at λ=280 nm was specific for dobutamine. Under different storage conditions only samples stored at 40°C showed greater than 5% degradation (5.08%) at 42 days and had the shortest T95% based on this criterion (44.6 days compared with 111.4 days for 4°C). Exposure to light also reduced dobutamine stability. Discolouration on storage was the limiting factor in shelf life allocation, even when dobutamine remained within 5% of the initial concentration. Conclusions A stability indicating HPLC assay for dobutamine was developed. The shelf life recommended for the CIVAS product was 42 days at 4°C and 35 days at room temperature when protected from light.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sea surface temperature (SST) datasets have been generated from satellite observations for the period 1991–2010, intended for use in climate science applications. Attributes of the datasets specifically relevant to climate applications are: first, independence from in situ observations; second, effort to ensure homogeneity and stability through the time-series; third, context-specific uncertainty estimates attached to each SST value; and, fourth, provision of estimates of both skin SST (the fundamental measure- ment, relevant to air-sea fluxes) and SST at standard depth and local time (partly model mediated, enabling comparison with his- torical in situ datasets). These attributes in part reflect requirements solicited from climate data users prior to and during the project. Datasets consisting of SSTs on satellite swaths are derived from the Along-Track Scanning Radiometers (ATSRs) and Advanced Very High Resolution Radiometers (AVHRRs). These are then used as sole SST inputs to a daily, spatially complete, analysis SST product, with a latitude-longitude resolution of 0.05°C and good discrimination of ocean surface thermal features. A product user guide is available, linking to reports describing the datasets’ algorithmic basis, validation results, format, uncer- tainty information and experimental use in trial climate applications. Future versions of the datasets will span at least 1982–2015, better addressing the need in many climate applications for stable records of global SST that are at least 30 years in length.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we show that periodic auroral arc structures are seen at the location of one particular auroral substorm onset for the 15 min preceding onset, suggesting that field line resonances should be considered a strong candidate for triggering substorm onset. Irrespective of whether this field line resonance is coincidentally or causally linked to this substorm onset, the characteristics of the field line resonance can be used to remote sense the characteristics of the geomagnetic field line that supports substorm onset. In this instance, the eigenfrequency of this resonance is around 12 mHz. Interestingly, however, there is no evidence of this field line resonance in a seven satellite major Time History of Events and Macroscale Interactions during Substorms (THEMIS)-GOES conjunction, ranging from geosynchronous orbit to ~30 RE. However, using space-based cross-phase measurements of the local field line eigenfrequency at the inner THEMIS locations, we find that the local field line eigenfrequency is 6–10 mHz. Hence, we can reliably say that this 12 mHz Field Line Resonance (FLR) must lie inside of THEMIS locations. Our conclusion is that a high-m field line resonance can both represent a strong candidate for a trigger for substorm onset, as first proposed by Samson et al. (1992), and that its characteristics can provide invaluable information as to where substorm onset occurs in the magnetosphere.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Polar spacecraft had a prolonged encounter with the high-latitude dayside magnetopause on May 29, 1996. This encounter with the magnetopause occurred when the interplanetary magnetic field was directed northward. From the three-dimensional electron and ion distribution functions measured by the Hydra instrument, it has been possible to identify nearly all of the distinct boundary layer regions associated with high-latitude reconnection. The regions that have been identified are (1) the cusp; (2) the magnetopause current layer; (3) magnetosheath field lines that have interconnected in only the Northern Hemisphere; (4) magnetosheath field lines that have interconnected in only the Southern Hemisphere; (5) magnetosheath field lines that have interconnected in both the Northern and Southern Hemispheres; (6) magnetosheath that is disconnected from the terrestrial magnetic field; and (7) high-latitude plasma sheet field lines that are participating in magnetosheath reconnection. Reconnection over this time period was occurring at high latitudes over a broad local-time extent, interconnecting the magnetosheath and lobe and/or plasma sheet field lines in both the Northern and Southern Hemispheres. Newly closed boundary layer field lines were observed as reconnection occur-red first at high latitudes in one hemisphere and then later in the other. These observations establish the location of magnetopause reconnection during these northward interplanetary magnetic field conditions as being at high latitudes, poleward of the cusp, and further reinforce the general interpretation of electron and ion phase space density signatures as indicators of magnetic reconnection and boundary layer formation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A method for quantifying diffusive flows of O+ ions in the topside ionosphere from satellite soundings is described. A departure from diffusive equilibrium alters the shape of the plasma scale-height profile near the F2-peak where ion-neutral frictional drag is large. The effect enables the evaluation of , the field-aligned flux of O+ ions relative to the neutral oxygen atom gas, using MSIS model values for the neutral thermospheric densities and temperature. Upward flow values are accurate to within about 10%, the largest sources of error being the MSIS prediction for the concentration of oxygen atoms and the plasma temperature gradient deduced from the sounding. Downward flux values are only determined to within 20%. From 60,000 topside soundings, taken at the minimum and rising phase of the solar cycle, a total of 1098 mean scale-height profiles are identified for which no storm sudden commencement had occurred in the previous 12 days and for which Kp was less than 2o, each mean profile being an average of about six soundings. A statistical study ofdeduced from these profiles shows the diurnal cycle of O+ flow in the quiet, topside ionosphere at mid-latitudes and its seasonal variations. The differences betweenand ion flux observations from incoherent scatter radars are considered using the meridional thermospheric winds predicted by a global, three-dimensional model. The mean interhemispheric flow from summer to winter is compared with predictions by a numerical model of the protonospheric coupling of conjugate ionospheres for up to 6 days following a geomagnetic storm. The observed mean (of order 3 × 1016 ions day−1 along a flux tube of area 1 m2 at 1000 km) is larger than predicted for day 6 and the suggested explanation is a decrease in upward flows from the winter, daytime ionosphere between the sixth and twelfth days.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Many biominerals form from amorphous calcium carbonate (ACC), but this phase is highly unstable when synthesised in its pure form inorganically. Several species of earthworm secrete calcium carbonate granules which contain highly stable ACC. We analysed the milky fluid from which granules form and solid granules for amino acid (by liquid chromatography) and functional group (by Fourier transform infrared (FTIR) spectroscopy) compositions. Granule elemental composition was determined using inductively coupled plasma-optical emission spectroscopy (ICP-OES) and electron microprobe analysis (EMPA). Mass of ACC present in solid granules was quantified using FTIR and compared to granule elemental and amino acid compositions. Bulk analysis of granules was of powdered bulk material. Spatially resolved analysis was of thin sections of granules using synchrotron-based μ-FTIR and EMPA electron microprobe analysis. Results The milky fluid from which granules form is amino acid-rich (≤ 136 ± 3 nmol mg−1 (n = 3; ± std dev) per individual amino acid); the CaCO3 phase present is ACC. Even four years after production, granules contain ACC. No correlation exists between mass of ACC present and granule elemental composition. Granule amino acid concentrations correlate well with ACC content (r ≥ 0.7, p ≤ 0.05) consistent with a role for amino acids (or the proteins they make up) in ACC stabilisation. Intra-granule variation in ACC (RSD = 16%) and amino acid concentration (RSD = 22–35%) was high for granules produced by the same earthworm. Maps of ACC distribution produced using synchrotron-based μ-FTIR mapping of granule thin sections and the relative intensity of the ν2: ν4 peak ratio, cluster analysis and component regression using ACC and calcite standards showed similar spatial distributions of likely ACC-rich and calcite-rich areas. We could not identify organic peaks in the μ-FTIR spectra and thus could not determine whether ACC-rich domains also had relatively high amino acid concentrations. No correlation exists between ACC distribution and elemental concentrations determined by EMPA. Conclusions ACC present in earthworm CaCO3 granules is highly stable. Our results suggest a role for amino acids (or proteins) in this stability. We see no evidence for stabilisation of ACC by incorporation of inorganic components.