959 resultados para Perturbed Verblunsky coefficients
Resumo:
This paper is concerned with an analysis of the Becker-Döring equations which lie at the heart of a number of descriptions of non-equilibrium phase transitions and related complex dynamical processes. The Becker-Döring theory describes growth and fragmentation in terms of stepwise addition or removal of single particles to or from clusters of similar particles and has been applied to a wide range of problems of physicochemical and biological interest within recent years. Here we consider the case where the aggregation and fragmentation rates depend exponentially on cluster size. These choices of rate coefficients at least qualitatively correspond to physically realistic molecular clustering scenarios such as occur in, for example, simulations of simple fluids. New similarity solutions for the constant monomer Becker-Döring system are identified, and shown to be generic in the case of aggregation and fragmentation rates that depend exponentially on cluster size.
Resumo:
Intra-diffusion coefficients of three fluorinated alcohols, 2,2,3,3,3-pentafluoropropan-1-ol (PFP), 2,2,3,3,4,4,4-heptafluorobutan-1-ol (HFB) and 2,2,3,3,4,4,5,5,5-nonafluoropentan-1-ol (NFP) in water have been measured by the PFG–NMR spin-echo technique as a function of temperature and composition, focusing on the alcohol dilute region. For comparison, intra-diffusion coefficients of 2,2,2- trifluoroethanol (TFE) and HFB have also been measured in heavy water using the same method and conditions. As far as we know, these are the first experimental measurements of this property for these binary systems. Intra-diffusion coefficients for NFP in water and for TFE and HFB in heavy water have also been obtained by molecular dynamics simulation, complementing those for TFE, PFP and HFB reported in a previous work. The agreement between experimental and simulated results for PFP, HFB and NFP in water is reasonable, although presenting higher deviations than for the TFE/water system. From the dependence of the intra-diffusion coefficients on temperature, diffusion activation energies were estimated for all the solutes in water and heavy water.
Resumo:
The vapor liquid-equilibrium of water + ionic liquids is relevant for a wide range of applications of these compounds. It is usually measured by ebulliometric techniques, but these are time consuming and expensive. In this work it is shown that the activity coefficients of water in a series of cholinium-based ionic liquids can be reliably and quickly estimated at 298.15K using a humidity meter instrument. The cholinium based ionic liquids were chosen to test this experimental methodology since data for water activities of quaternary ammonium salts are available in the literature allowing the validation of the proposed technique. The COSMO-RS method provides a reliable description of the data and was also used to understand the molecular interactions occurring on these binary systems. The estimated excess enthalpies indicate that hydrogen bonding between water and ionic liquid anion is the dominant interaction that governs the behavior of water and cholinium-based ionic liquids systems, while the electrostatic-misfit and van der Walls forces have a minor contribution to the total excess enthalpies.
Resumo:
The activity coefficients at infinite dilution, gamma(infinity)(13), of 55 organic solutes and water in three ionic liquids with the common cation 1-butyl-3-methylimidazolium and the polar anions Cl--,Cl- [CH3SO3](-) and [(CH3)(2)PO4](-), were determined by (gas + liquid) chromatography at four temperatures in the range (358.15 to 388.15) K for alcohols and water, and T = (398.15 to 428.15) K for the other organic solutes including alkanes, cycloalkanes, alkenes, cycloalkenes, alkynes, ketones, ethers, cyclic ethers, aromatic hydrocarbons, esters, butyraldehyde, acetonitrile, pyridine, 1-nitropropane and thiophene. From the experimental gamma(infinity)(13) values, the partial molar excess Gibbs free energy, (G) over bar (E infinity)(m), enthalpy (H) over bar (E infinity)(m), and entropy (S) over bar (E infinity)(m), at infinite dilution, were estimated in order to provide more information about the interactions between the solutes and the ILs. Moreover, densities were measured and (gas + liquid) partition coefficients (KL) calculated. Selectivities at infinite dilution for some separation problems such as octane/benzene, cyclohexane/benzene and cyclohexane/thiophene were calculated using the measured gamma(infinity)(13), and compared with literature values for N-methyl-2-pyrrolidinone (NMP), sulfolane, and other ionic liquids with a common cation or anion of the ILs here studied. From the obtained infinite dilution selectivities and capacities, it can be concluded that the ILs studied may replace conventional entrainers applied for the separation processes of aliphatic/aromatic hydrocarbons.
Resumo:
L'objectif de ce mémoire est de dénombrer les polynômes irréductibles unitaires sur un corps fini en prescrivant des contraintes sur les coefficients. Dans les prochaines pages, il sera question de fixer simplement des coefficients, ou simplement de fixer leur signe, leur cubicité ou leur quarticité.
Resumo:
L'objectif de ce mémoire est de dénombrer les polynômes irréductibles unitaires sur un corps fini en prescrivant des contraintes sur les coefficients. Dans les prochaines pages, il sera question de fixer simplement des coefficients, ou simplement de fixer leur signe, leur cubicité ou leur quarticité.
Resumo:
We consider a system described by the linear heat equation with adiabatic boundary conditions which is perturbed periodicaly. This perturbation is nonlinear and is characterized by a one-parameter family of quadratic maps. The system, depending on the parameters, presents very complex behaviour. We introduce a symbolic framework to analyze the system and resume its most important features.
Resumo:
Olive tree sap flow measurements were collected in an intensive orchard near Évora, Portugal, during the irrigation seasons of 2013 and 2014, to calculate daily tree transpiration rates (T_SF). Meteorological variables were also collected to calculate reference evapotranspiration (ETo). Both data were used to assess values of basal crop coefficient (Kcb) for the period of the sap flow observations. The soil water balance model SIMDualKc was calibrated with soil, biophysical ground data and sap flow measurements collected in 2013. Validated in 2014 with collected sap flow observations, the model was used to provide estimates of dual e single crop coefficients for 2014 crop growing season. Good agreement between model simulated daily transpiration rates and those obtained with sapflow measurements was observed for 2014 (R2=0.76, RMSE=0.20 mm d-1), the year of validation, with an estimation average absolute error (AAE) of 0.20 mm d-1. Olive modeled daily actual evapotranspiration resulted in atual ETc values of 0.87, 2.05 and 0.77 mm d-1 for 2014 initial, mid- and end-season, respectively. Actual crop coefficient (Kc act) values of 0.51, 0.43 and 0.67 were also obtained for the same periods, respectively. Higher Kc values during spring (initial stage) and autumn (end-stage) were published in FAO56, varying between 0.65 for Kc ini and 0.70 for Kc end. The lower Kc mid value of 0.43 obtained for the summer (mid-season) is also inconsistent with the FAO56 expected Kc mid value of 0.70 for the period. The modeled Kc results are more consistent with the ones published by Allen & Pereira [1] for olive orchards with effective ground cover of 0.25 to 0.5, which vary between 0.40 and 0.80 for Kc ini, 0.40–0.60 for Kc mid with no active ground cover, and 0.35–0.75 for Kc end, depending on ground cover. The SIMDualKc simulation model proved to be appropriate for obtaining evapotranspiration and crop coefficient values for our intensive olive orchard in southern Portugal.
Resumo:
Biophysical and meteorological variables as well as radiometric canopy temperatures were collected in an intensive orchard near Évora, Portugal, with 28% ground cover by canopy and combined in a simplified two-source energy balance model (STSEB) to independently calculate the olive tree transpiration (T_STSEB) component of the total evapotranspiration (ETc). Sap flow observations were simultaneously taken in the same orchard allowing also for independent calculations of tree transpiration (T_SF). Model water use results were compared with water use estimates from the sap flow measurements. Good agreement was observed (R2=0.86, RMSE=0.20 mm d-1), with an estimation average absolute error (AAE) of 0.17 mm d-1. From June to August, on average olive water use were 1.92 and 1.89 mm d-1 for sap flow and STSEB model respectively, and 1.38 and 1.58 mm d-1 for the month of September. Results were also used to assess the olive basal crop coefficients (Kcb). Kcb estimates of 0.33 were obtained for sap flow and STSEB model, respectively, for June to August, and of 0.44 and 0.53 for the month of September. Basal crop coefficients were lower than the suggested FAO56 average Kcb values of 0.65 for June to August, the crop mid-season growth stage, and of 0.65 for the month of September, the end-season.
Resumo:
We consider a conservation law perturbed by a linear diffusion and a general form of non-positive dispersion. We prove the convergence of the corresponding solution to the entropy weak solution of the hyperbolic conservation law.
Resumo:
The effectiveness of higher-order spectral (HOS) phase features in speaker recognition is investigated by comparison with Mel Cepstral features on the same speech data. HOS phase features retain phase information from the Fourier spectrum unlikeMel–frequency Cepstral coefficients (MFCC). Gaussian mixture models are constructed from Mel– Cepstral features and HOS features, respectively, for the same data from various speakers in the Switchboard telephone Speech Corpus. Feature clusters, model parameters and classification performance are analyzed. HOS phase features on their own provide a correct identification rate of about 97% on the chosen subset of the corpus. This is the same level of accuracy as provided by MFCCs. Cluster plots and model parameters are compared to show that HOS phase features can provide complementary information to better discriminate between speakers.
Resumo:
PURPOSE: To introduce techniques for deriving a map that relates visual field locations to optic nerve head (ONH) sectors and to use the techniques to derive a map relating Medmont perimetric data to data from the Heidelberg Retinal Tomograph. METHODS: Spearman correlation coefficients were calculated relating each visual field location (Medmont M700) to rim area and volume measures for 10 degrees ONH sectors (HRT III software) for 57 participants: 34 with glaucoma, 18 with suspected glaucoma, and 5 with ocular hypertension. Correlations were constrained to be anatomically plausible with a computational model of the axon growth of retinal ganglion cells (Algorithm GROW). GROW generated a map relating field locations to sectors of the ONH. The sector with the maximum statistically significant (P < 0.05) correlation coefficient within 40 degrees of the angle predicted by GROW for each location was computed. Before correlation, both functional and structural data were normalized by either normative data or the fellow eye in each participant. RESULTS: The model of axon growth produced a 24-2 map that is qualitatively similar to existing maps derived from empiric data. When GROW was used in conjunction with normative data, 31% of field locations exhibited a statistically significant relationship. This significance increased to 67% (z-test, z = 4.84; P < 0.001) when both field and rim area data were normalized with the fellow eye. CONCLUSIONS: A computational model of axon growth and normalizing data by the fellow eye can assist in constructing an anatomically plausible map connecting visual field data and sectoral ONH data.
Resumo:
Principal Topic A small firm is unlikely to possess internally the full range of knowledge and skills that it requires or could benefit from for the development of its business. The ability to acquire suitable external expertise - defined as knowledge or competence that is rare in the firm and acquired from the outside - when needed thus becomes a competitive factor in itself. Access to external expertise enables the firm to focus on its core competencies and removes the necessity to internalize every skill and competence. However, research on how small firms access external expertise is still scarce. The present study contributes to this under-developed discussion by analysing the role of trust and strong ties in the small firm's selection and evaluation of sources of external expertise (henceforth referred to as the 'business advisor' or 'advisor'). Granovetter (1973, 1361) defines the strength of a network tie as 'a (probably linear) combination of the amount of time, the emotional intensity, the intimacy (mutual confiding) and the reciprocal services which characterize the tie'. Strong ties in the context of the present investigation refer to sources of external expertise who are well known to the owner-manager, and who may be either informal (e.g., family, friends) or professional advisors (e.g., consultants, enterprise support officers, accountants or solicitors). Previous research has suggested that strong and weak ties have different fortes and the choice of business advisors could thus be critical to business performance) While previous research results suggest that small businesses favour previously well known business advisors, prior studies have also pointed out that an excessive reliance on a network of well known actors might hamper business development, as the range of expertise available through strong ties is limited. But are owner-managers of small businesses aware of this limitation and does it matter to them? Or does working with a well-known advisor compensate for it? Hence, our research model first examines the impact of the strength of tie on the business advisor's perceived performance. Next, we ask what encourages a small business owner-manager to seek advice from a strong tie. A recent exploratory study by Welter and Kautonen (2005) drew attention to the central role of trust in this context. However, while their study found support for the general proposition that trust plays an important role in the choice of advisors, how trust and its different dimensions actually affect this choice remained ambiguous. The present paper develops this discussion by considering the impact of the different dimensions of perceived trustworthiness, defined as benevolence, integrity and ability, on the strength of tie. Further, we suggest that the dimensions of perceived trustworthiness relevant in the choice of a strong tie vary between professional and informal advisors. Methodology/Key Propositions Our propositions are examined empirically based on survey data comprising 153 Finnish small businesses. The data are analysed utilizing the partial least squares (PLS) approach to structural equation modelling with SmartPLS 2.0. Being non-parametric, the PLS algorithm is particularly well-suited to analysing small datasets with non-normally distributed variables. Results and Implications The path model shows that the stronger the tie, the more positively the advisor's performance is perceived. Hypothesis 1, that strong ties will be associated with higher perceptions of performance is clearly supported. Benevolence is clearly the most significant predictor of the choice of a strong tie for external expertise. While ability also reaches a moderate level of statistical significance, integrity does not have a statistically significant impact on the choice of a strong tie. Hence, we found support for two out of three independent variables included in Hypothesis 2. Path coefficients differed between the professional and informal advisor subsamples. The results of the exploratory group comparison show that Hypothesis 3a regarding ability being associated with strong ties more pronouncedly when choosing a professional advisor was not supported. Hypothesis 3b arguing that benevolence is more strongly associated with strong ties in the context of choosing an informal advisor received some support because the path coefficient in the informal advisor subsample was much larger than in the professional advisor subsample. Hypothesis 3c postulating that integrity would be more strongly associated with strong ties in the choice of a professional advisor was supported. Integrity is the most important dimension of trustworthiness in this context. However, integrity is of no concern, or even negative, when using strong ties to choose an informal advisor. The findings of this study have practical relevance to the enterprise support community. First of all, given that the strength of tie has a significant positive impact on the advisor's perceived performance, this implies that small business owners appreciate working with advisors in long-term relationships. Therefore, advisors are well advised to invest into relationship building and maintenance in their work with small firms. Secondly, the results show that, especially in the context of professional advisors, the advisor's perceived integrity and benevolence weigh more than ability. This again emphasizes the need to invest time and effort into building a personal relationship with the owner-manager, rather than merely maintaining a professional image and credentials. Finally, this study demonstrates that the dimensions of perceived trustworthiness are orthogonal with different effects on the strength of tie and ultimately perceived performance. This means that entrepreneurs and advisors should consider the specific dimensions of ability, benevolence and integrity, rather than rely on general perceptions of trustworthiness in their advice relationships.
Resumo:
In this paper, the stability of an autonomous microgrid with multiple distributed generators (DG) is studied through eigenvalue analysis. It is assumed that all the DGs are connected through Voltage Source Converter (VSC) and all connected loads are passive. The VSCs are controlled by state feedback controller to achieve desired voltage and current outputs that are decided by a droop controller. The state space models of each of the converters with its associated feedback are derived. These are then connected with the state space models of the droop, network and loads to form a homogeneous model, through which the eigenvalues are evaluated. The system stability is then investigated as a function of the droop controller real and reac-tive power coefficients. These observations are then verified through simulation studies using PSCAD/EMTDC. It will be shown that the simulation results closely agree with stability be-havior predicted by the eigenvalue analysis.