831 resultados para Perturbação de Stress Pós-Traumático - Post-Traumatic Stress Disorder
Resumo:
Also physical exercise in general is accepted to be protective, acute and strenuous exercise has been shown to induce oxidative stress. Enhanced formation of free radicals leads to oxidation of macromolecules and to DNA damage. On the other hand ultra-endurance events which require strenuous exercise are very popular and the number of participants is continuously increasing worldwide. Since only few data exists on Ironman triathletes, who are prototypes of ultra-endurance athletes, this study was aimed at assessing the risk of oxidative stress and DNA damage after finishing a triathlon and to predict a possible health risk. Blood samples of 42 male athletes were taken 2 days before, within 20 min after the race, 1, 5 and 19 days post-race. Oxidative stress marker increased only moderately after the race and returned to baseline after 5 days. Marker of DNA damage measured by the SCGE assay with and without restriction enzymes as well as by the sister chromatid exchange assay did either show no change or deceased within the first day after the race. Due to intake during the race and the release by the cells plasma concentrations of vitamin C and α-tocopherol increased after the event and returned to baseline 1 day after. This study indicates that despite a temporary increase in some oxidative stress markers, there is no persistent oxidative stress and no DNA damage in response to an Ironman triathlon in trained athletes, mainly due to an appropriate antioxidant intake and general protective alterations in the antioxidant defence system.
Resumo:
Stress is a major driving force in alcohol use disorders (AUDs). It influences how much one consumes, craving intensity and whether an abstinent individual will return to harmful alcohol consumption. We are most vulnerable to the effects of stress during early development, and exposure to multiple traumatic early life events dramatically increases the risk for AUDs. However, not everyone exposed to early life stress will develop an AUD. The mechanisms determining whether an individual’s brain adapts and becomes resilient to the effects of stress or succumbs and is unable to cope with stress remain elusive. Emerging evidence suggests that neuroplastic changes in the nucleus accumbens (NAc) following early life stress underlie the development of AUDs. This review discusses the impact of early life stress on NAc structure and function, how these changes affect cholinergic signaling within the mesolimbic reward pathway and the role nicotinic acetylcholine receptors (nAChRs) play in this process. Understanding the neural pathways and mechanism determining stress resilience or susceptibility will improve our ability to identify individuals susceptible to developing AUDs, formulate cognitive interventions to prevent AUDs in susceptible individuals and to elucidate and enhance potential therapeutic targets, such as the nAChRs, for those struggling to overcome an AUD.
Resumo:
Plaque rupture has been considered to be the result of its structural failure. The aim of this study is to suggest a possible link between higher stresses and rupture sites observed from in vivo magnetic resonance imaging (MRI) of transient ischemic attack (TIA) patients, by using stress analysis methods. Three patients, who had recently suffered a TIA, underwent in vivo multi-spectral MR imaging. Based on plaque geometries reconstructed from the post-rupture status, six pre-rupture plaque models were generated for each patient dataset with different reconstructions of rupture sites to bridge the gap of fibrous cap from original MRI images. Stress analysis by fluid structure interaction simulation was performed on the models, followed by analysis of local stress concentration distribution and plaque rupture sites. Furthermore, the sensitivity of stress analysis to the pre-rupture plaque geometry reconstruction was examined. Local stress concentrations were found to be located at the plaque rupture sites for the three subjects studied. In the total of 18 models created, the locations of the stress concentration regions were similar in 17 models in which rupture sites were always associated with high stresses. The local stress concentration region moved from circumferential center to the shoulder region (slightly away from the rupture site) for a case with a thick fibrous cap. Plaque wall stress level in the rupture locations was found to be much higher than the value in non-rupture locations. The good correlation between local stress concentrations and plaque rupture sites, and generally higher plaque wall stress level in rupture locations in the subjects studied could provide indirect evidence for the extreme stress-induced plaque rupture hypothesis. Local stress concentration in the plaque region could be one of the factors contributing to plaque rupture.
Resumo:
Large numbers of Sagmariasus verreauxi are trapped and hand collected in Australia, but discarded due to size and quota restrictions, and under the unevaluated assumption of few impacts. To test the validity of enforced discarding, trapped and hand-collected S. verreauxi (49-143. mm carapace length - CL) were examined for external damage, placed into cages, transferred to aquaria and monitored (with controls) over three months. Haemolymph was non-repetitively sampled immediately and at one, three, and seven days to quantify stress. Most trapped (64%) and hand-collected (79%) specimens were undersized (<104. mm CL), with the latter method yielding broader ranges of sizes and moult stages. Within-trap Octopus tetricus predation caused the only mortalities (3.3%). Hand collection resulted in much greater antennae and pereopod loss than trapping (53 vs. 4%) but, compared to controls, both methods evoked benign physiological responses that resolved within a week. While most wounded S. verreauxi regenerated all or some missing appendages post-moult, their mean CLs were less than those from intact conspecifics. Simple strategies, including larger mesh sizes, and/or installing modifications to reduce bycatch in traps, careful hand collection, and appropriate release techniques might minimise impacts (including predation) to unwanted S. verreauxi, and help to control stock exploitation. © 2012 Elsevier B.V.
Resumo:
Tension banding castration of cattle is gaining favour because it is relatively simple to perform and is promoted by retailers of the banders as a humane castration method. Two experiments were conducted, under tropical conditions using Bos indicus bulls comparing tension banding (Band) and surgical (Surgical) castration of weaner (7–10 months old) and mature (22–25 months old) bulls with and without pain management (NSAID (ketoprofen) or saline injected intramuscularly immediately prior to castration). Welfare outcomes were assessed using a range of measures; this paper reports on some physiological, morbidity and productivity-related responses to augment the behavioural responses reported in an accompanying paper. Blood samples were taken on the day of castration (day 0) at the time of restraint (0 min) and 30 min (weaners) or 40 min (mature bulls), 2 h, and 7 h; and days 1, 2, 3, 7, 14, 21 and 28 post-castration. Plasmas from day 0 were assayed for cortisol, creatine kinase, total protein and packed cell volume. Plasmas from the other samples were assayed for cortisol and haptoglobin (plus the 0 min sample). Liveweights were recorded approximately weekly to 6 weeks and at 2 and 3 months post-castration. Castration sites were checked at these same times to 2 months post-castration to score the extent of healing and presence of sepsis. Cortisol concentrations (mean ± s.e. nmol/L) were significantly (P < 0.05) higher in the Band (67 ± 4.5) compared with Surgical weaners (42 ± 4.5) at 2 h post-castration, but at 24 h post-castration were greater in the Surgical (43 ± 3.2) compared with the Band weaners (30 ± 3.2). The main effect of ketoprofen was on the cortisol concentrations of the mature Surgical bulls; concentrations were significantly reduced at 40 min (47 ± 7.2 vs. 71 ± 7.2 nmol/L for saline) and 2 h post-castration (24 ± 7.2, vs. 87 ± 7.2 nmol/L for saline). Ketoprofen, however, had no effect on the Band mature bulls, with their cortisol concentrations averaging 54 ± 5.1 nmol/L at 40 min and 92 ± 5.1 nmol/L at 2 h. Cortisol concentrations were also significantly elevated in the Band (83 ± 3.0 nmol/L) compared with Surgical mature bulls (57 ± 3.0 nmol/L) at weeks 2–4 post-castration. The timing of this elevation coincided with significantly elevated haptoglobin concentrations (mg/mL) in the Band bulls (2.97 ± 0.102 for mature bulls and 1.71 ± 0.025 for weaners, vs. 2.10 ± 0.102 and 1.45 ± 0.025 respectively for the Surgical treatment) and evidence of slow wound healing and sepsis in both the weaner (0.81 ± 0.089 not healed at week 4 for Band, 0.13 ± 0.078 for Surgical) and mature bulls (0.81 ± 0.090 at week 4 for Band, 0.38 ± 0.104 for Surgical). Overall, liveweight gains of both age groups were not affected by castration method. The findings of acute pain, chronic inflammation and possibly chronic pain in the mature bulls at least, together with poor wound healing in the Band bulls support behavioural findings reported in the accompanying paper and demonstrate that tension banding produces inferior welfare outcomes for weaner and mature bulls compared with surgical castration.
Resumo:
Flying-foxes (pteropid bats) are the natural host of Hendra virus, a recently emerged zoonotic virus responsible for mortality or morbidity in horses and humans in Australia since 1994. Previous studies have suggested physiological and ecological risk factors for infection in flying-foxes, including physiological stress. However, little work has been done measuring and interpreting stress hormones in flying-foxes. Over a 12-month period, we collected pooled urine samples from underneath roosting flying-foxes, and urine and blood samples from captured individuals. Urine and plasma samples were assayed for cortisol using a commercially available enzyme immunoassay. We demonstrated a typical post-capture stress response in flying-foxes, established urine specific gravity as an attractive alternative to creatinine to correct urine concentration, and established population-level urinary cortisol ranges (and geometric means) for the four Australian species: Pteropus alecto 0.5–305.1 ng/mL (20.1 ng/mL); Pteropus conspicillatus 0.3–370.9 ng/mL (18.9 ng/mL); Pteropus poliocephalus 0.3–311.3 ng/mL (10.1 ng/mL); Pteropus scapulatus 5.2–205.4 ng/mL (40.7 ng/mL). Geometric means differed significantly except for P. alecto and P. conspicillatus. Our approach is methodologically robust, and has application both as a research or clinical tool for flying-foxes, and for other free-living colonial wildlife species
Resumo:
Research in this thesis focussed on the improvement of agricultural crops in increasing water use efficiency that impacts global crop productivity. The study identified key genetic regulatory mechanisms that the resurrection plant Tripogon loliiformis utilises to tolerate desiccation. Due to the conserved nature of the pathways involved, this information can be transferred for the enhancement of drought tolerance and water use efficiency in agricultural crops. Specifically this study used high throughput sequencing, microscopy and plant transformation to further the understanding of post-transcriptional regulatory mechanisms. It was shown that T. loliiformis uses microRNAs to regulate pro-survival autophagy pathways to tolerate desiccation.
Resumo:
An experimental investigation into the ambient temperature, load-controlled tension�tension fatigue behavior of a martensitic Nitinol shape memory alloy (SMA) was conducted. Fatigue life for several stress levels spanning the critical stress for detwinning was determined and compared with that obtained on an alloy similar in composition but in the austenitic state at room temperature. Results show that the fatigue life of the pseudo-plastic alloy is superior to superelastic shape memory alloy. The stress�strain hysteretic response, monitored throughout the fatigue loading, reveals progressive strain accumulation with the cyclic loading. In addition, the area of hysteresis and recoverable and frictional energies were found to decrease with increasing number of fatigue cycles. Post-mortem characterization of the fatigued specimens through calorimetry and fractography was conducted in order to get further insight into the fatigue micromechanisms. These results are discussed in terms of reversible and irreversible microstructural changes that take place during cyclic loading. Aspects associated with self-heating of martensitic alloy undergoing high frequency stress cycling are discussed.
Resumo:
Plants constantly face adverse environmental conditions, such as drought or extreme temperatures that threaten their survival. They demonstrate astonishing metabolic flexibility in overcoming these challenges and one of the key responses to stresses is changes in gene expression leading to alterations in cellular functions. This is brought about by an intricate network of transcription factors and associated regulatory proteins. Protein-protein interactions and post-translational modifications are important steps in this control system along with carefully regulated degradation of signaling proteins. This work concentrates on the RADICAL-INDUCED CELL DEATH1 (RCD1) protein which is an important regulator of abiotic stress-related and developmental responses in Arabidopsis thaliana. Plants lacking this protein function display pleiotropic phenotypes including sensitivity to apoplastic reactive oxygen species (ROS) and salt, ultraviolet B (UV-B) and paraquat tolerance, early flowering and senescence. Additionally, the mutant plants overproduce nitric oxide, have alterations in their responses to several plant hormones and perturbations in gene expression profiles. The RCD1 gene is transcriptionally unresponsive to environmental signals and the regulation of the protein function is likely to happen post-translationally. RCD1 belongs to a small protein family and, together with its closest homolog SRO1, contains three distinguishable domains: In the N-terminus, there is a WWE domain followed by a poly(ADP-ribose) polymerase-like domain which, despite sequence conservation, does not seem to be functional. The C-terminus of RCD1 contains a novel domain called RST. It is present in RCD1-like proteins throughout the plant kingdom and is able to mediate physical interactions with multiple transcription factors. In conclusion, RCD1 is a key point of signal integration that links ROS-mediated cues to transcriptional regulation by yet unidentified means, which are likely to include post-translational mechanisms. The identification of RCD1-interacting transcription factors, most of whose functions are still unknown, opens new avenues for studies on plant stress as well as developmental responses.
Resumo:
Objectives: Glutathionyl haemoglobin (GS-Hb) belonging to the class of glutathionylated proteins has been investigated as a possible marker of oxidative stress in different chronic diseases. The purpose of this study was to examine whether glutathionyl haemoglobin can serve as an oxidative stress marker in non-diabetic chronic renal failure patients on different renal replacement therapies (RRT) through its quantitation, and characterization of the specific binding site of glutathione in haemoglobin molecule by mass spectrometric analysis. Design and methods: The study group consisted of non-diabetic chronic renal failure patients on renal replacement therapy (RRT): hemodialysis (HD), continuous ambulatory peritoneal dialysis (CAPD) and renal allograft transplant (Txp) patients. Haemoglobin samples of these subjects were analyzed by liquid chromatography electrospray ionization mass spectrometry for GS-Hb quantitation. Characterization of GS-Hb was done by tandem mass spectrometry. Levels of erythrocyte glutathione (GSH) and lipid peroxidation (as thiobarbituric acid reacting substances) were measured spectrophotometrically, while glycated baernoglobin (HbA1c) was measured by HPLC. Results: GS-Hb levels were markedly elevated in the dialysis group and marginally in the transplant group as compared to the controls. GS-Hb levels correlated positively with lipid peroxidation and negatively with the erythrocyte glutathione levels in RRT groups indicating enhanced oxidative stress. De novo sequencing of the chymotryptic fragment of GS-Hb established that glutathione is attached to Cys-93 of the beta globin chain. Mass spectrometric quantitation of total glycated haemoglobin showed good agreement with HbA1c estimation by conventional HPLC method. Conclusions: Glutathionyl haemoglobin can serve as a clinical marker of oxidative stress in chronic debilitating therapies like RRT. Mass spectrometry provides a reliable analytical tool for quantitation and residue level characterization of different post-translational modifications of haemoglobin. (c) 2007 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
Resumo:
A atividade física intensa está associada com as adaptações biológicas que envolvem a melhora da homeostase da glicose, da capacidade antioxidante e da microcirculação cutânea. A ingestão insuficiente de antioxidantes na dieta pode levar ao estresse oxidativo e disfunção endotelial que afetam a microcirculação. Suco de uva tinto orgânico, uma importante fonte de polifenóis, com reconhecida função antioxidante e, portanto, o seu consumo pode melhorar o estado antioxidante, e assim, o metabolismo da glicose e a função endotelial. O objetivo deste estudo foi avaliar o efeito do consumo diário de suco de uva tinto orgânico, sobre a concentração plasmática de ácido úrico, atividade da superóxido dismutase eritrocitária (E-SOD), concentração sérica da insulina, glicemia e HOMA IR-2, além de suas relações com os parâmetros da microcirculação em triatletas. Participaram do estudo 10 triatletas do gênero masculino (28 15 anos). As amostras de sangue foram coletadas antes (basal) e após 20 dias de ingestão de suco de uva tinto orgânico (300mL/dia). Em relação ao valor basal, a insulina sérica (p = 0,02) e o ácido úrico (p = 0,04) aumentaram, enquanto a glicose plasmática (p <0,001) e a E-SOD diminuíram (p = 0,04) após os 20 dias de intervenção. Os parâmetros da microcirculação também foram influenciados pela ingestão de suco de uva tinto orgânico, foi observado redução no tempo necessário para o retorno dos eritrócitos à velocidade de basal após isquemia (TRBCmax) (p = 0,04), aumento da densidade capilar funcional (DCF, p = 0,003) e da velocidade dos eritrócitos após a isquemia (VELmax p <0,001). A redução da glicemia foi determinante direta do aumento da DCF (p = 0,04), enquanto níveis séricos de insulina (p = 0,04) e a redução na atividade da SOD-E (p = 0,04) foram negativamente associados com a redução do TRBCmax. Os resultados do presente estudo sugerem que a ingestão de suco de uva melhora a capacidade antioxidante, a homesostase glicêmica e a microcirculação de triatletas.
Resumo:
The successful utilization of an array of silicon on insulator complementary metal oxide semiconductor (SOICMOS) micro thermal shear stress sensors for flow measurements at macro-scale is demonstrated. The sensors use CMOS aluminum metallization as the sensing material and are embedded in low thermal conductivity silicon oxide membranes. They have been fabricated using a commercial 1 μm SOI-CMOS process and a post-CMOS DRIE back etch. The sensors with two different sizes were evaluated. The small sensors (18.5 ×18.5 μm2 sensing area on 266 × 266 μm2 oxide membrane) have an ultra low power (100 °C temperature rise at 6mW) and a small time constant of only 5.46 μs which corresponds to a cut-off frequency of 122 kHz. The large sensors (130 × 130 μm2 sensing area on 500 × 500 μm2 membrane) have a time constant of 9.82 μs (cut-off frequency of 67.9 kHz). The sensors' performance has proven to be robust under transonic and supersonic flow conditions. Also, they have successfully identified laminar, separated, transitional and turbulent boundary layers in a low speed flow. © 2008 IEEE.
Resumo:
This study was conducted to investigate time-dependent changes in oxidative enzymes in liver of crucian carp after intraperitoneally injection with extracted microcystins 600 and 150 mu g kg(-1) body weight. The results showed that activities of antioxidant enzymes, including superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase generally exhibited a rapid increase in early phase (1-3 h post injection), but gradually decreased afterwards (12-48 h) compared with the control, with an evident time-dependent effect. These zigzag changes over time contributed a better understanding on oxidative stress caused by microcystins in fish.
Resumo:
This experiment was designed to investigate the effect of dietary supplemental ascorbic acid (AA) on the feed intake, growth, serum lysozyme, hepatic superoxide dismutase (SOD) and handling stress response in Chinese longsnout catfish (Leiocassis longirostris Gunther) exposed to three levels of unionized ammonia nitrogen (UIA-N). Juvenile Chinese longsnout catfish were reared in 54 fibreglass tanks with a 3 x 3 factorial design treatment consisting of three supplemental AA levels in ascorbyl 2-monophosphate (38, 364 and 630 mg AA equivalent kg(-1) diet) and three UIA-N concentrations [0.004 (the control), 0.037 and 0.292 mg L-1]. The fish were sampled on the 11th, 32nd and 60th day. On the 62nd day, the remaining fish were subjected to an acute stress by being held in a dipnet out of water for 60 s, and sampled at 30 min post handling. The results showed that the specific growth rate (SGR) in 32 days significantly decreased with increased water UIA-N (P=0.0476) but was not affected by dietary supplemental AA (P > 0.05). After 60 days, SGR, feeding rate (FR) and feed conversion efficiency (FCE) significantly increased with increased dietary supplemental AA (P < 0.001) while remaining unaffected by water UIA-N (P > 0.05). There was no significant interaction between dietary AA and UIA-N for growth responses (P > 0.05). The serum lysozyme activity on the 11th day and the hepatic SOD activity on the 32nd day were significantly affected at high (0.292 mg L-1) water UIA-N. On the 62nd day, the increase in cortisol resulting from acute stress significantly decreased by higher UIA-N (P=0.038). It is suggested that Chinese longsnout catfish displayed an adaptive response after long-term UIA-N exposure, and AA had beneficial effects on the growth and feed intake of catfish and alleviated the negative effects of chronic ammonia stress. A chronically higher ammonia level shows a tendency to inhibit the cortisol response to another acute stressor.
Resumo:
The simultaneous control of residual stress and resistivity of polysilicon thin films by adjusting the deposition parameters and annealing conditions is studied. In situ boron doped polysilicon thin films deposited at 520 ℃ by low pressure chemical vapor deposition (LPCVD) are amorphous with relatively large compressive residual stress and high resistivity. Annealing the amorphous films in a temperature range of 600-800 ℃ gives polysilicon films nearly zero-stress and relatively low resistivity. The low residual stress and low resistivity make the polysilicon films attractive for potential applications in micro-electro-mechanical-systems (MEMS) devices, especially in high resonance frequency (high-f) and high quality factor (high-Q MEMS resonators. In addition, polysilicon thin films deposited at 570 ℃ and those without the post annealing process have low resistivities of 2-5 mΩ·cm. These reported approaches avoid the high temperature annealing process (> 1000℃), and the promising properties of these films make them suitable for high-Q and high-f MEMS devices.