976 resultados para Partouneaux, Maurice


Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The discovery and clinical application of molecular biomarkers in solid tumors, increasingly relies on nucleic acid extraction from FFPE tissue sections and subsequent molecular profiling. This in turn requires the pathological review of haematoxylin & eosin (H&E) stained slides, to ensure sample quality, tumor DNA sufficiency by visually estimating the percentage tumor nuclei and tumor annotation for manual macrodissection. In this study on NSCLC, we demonstrate considerable variation in tumor nuclei percentage between pathologists, potentially undermining the precision of NSCLC molecular evaluation and emphasising the need for quantitative tumor evaluation. We subsequently describe the development and validation of a system called TissueMark for automated tumor annotation and percentage tumor nuclei measurement in NSCLC using computerized image analysis. Evaluation of 245 NSCLC slides showed precise automated tumor annotation of cases using Tissuemark, strong concordance with manually drawn boundaries and identical EGFR mutational status, following manual macrodissection from the image analysis generated tumor boundaries. Automated analysis of cell counts for % tumor measurements by Tissuemark showed reduced variability and significant correlation (p < 0.001) with benchmark tumor cell counts. This study demonstrates a robust image analysis technology that can facilitate the automated quantitative analysis of tissue samples for molecular profiling in discovery and diagnostics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Empathy is an important aspect of patient–healthcare professional interactions.Aims: To investigate whether gender, level in the degree programme, employment and health status affected empathy scores of undergraduate pharmacy students.Method: All undergraduate pharmacy students (n=529) at Queen’s University Belfast were invited via email to completean online validated empathy questionnaire. Empathy scores were calculated and non-parametric tests used to determine associations between factors.Results: Response rate was 60.1% (318/529) and the mean empathy score was 106.19. Scores can range from 20 to 140,with higher scores representing a greater degree of empathy. There was no significant difference between genders (p=0.211). There was a significant difference in scores across the four levels of the programme (p<0.001); scores were lowest at Level 1 and greatest at Level 4 (final year). There were no significant differences in scores for respondents who had a part-time job, a chronic condition, or took regular medication in comparison to those who did not (p=0.028,p=0.880, p=0.456, respectively).Conclusion: A reasonable level of empathy was found relative to other studies; this could be further enhanced at lower levels of the degree pathway.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Social media channels, such as Facebook or Twitter, allow for people to express their views and opinions about any public topics. Public sentiment related to future events, such as demonstrations or parades, indicate public attitude and therefore may be applied while trying to estimate the level of disruption and disorder during such events. Consequently, sentiment analysis of social media content may be of interest for different organisations, especially in security and law enforcement sectors. This paper presents a new lexicon-based sentiment analysis algorithm that has been designed with the main focus on real time Twitter content analysis. The algorithm consists of two key components, namely sentiment normalisation and evidence-based combination function, which have been used in order to estimate the intensity of the sentiment rather than positive/negative label and to support the mixed sentiment classification process. Finally, we illustrate a case study examining the relation between negative sentiment of twitter posts related to English Defence League and the level of disorder during the organisation’s related events.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Small bowel accounts for only 0.5% of cancer cases in the US but incidence rates have been rising at 2.4% per year over the past decade. One-third of these are adenocarcinomas but little is known about their molecular pathology and no molecular markers are available for clinical use. Using a retrospective 28 patient matched normal-tumor cohort, next-generation sequencing, gene expression arrays and CpG methylation arrays were used for molecular profiling. Next-generation sequencing identified novel mutations in IDH1, CDH1, KIT, FGFR2, FLT3, NPM1, PTEN, MET, AKT1, RET, NOTCH1 and ERBB4. Array data revealed 17% of CpGs and 5% of RNA transcripts assayed to be differentially methylated and expressed respectively (p < 0.01). Merging gene expression and DNA methylation data revealed CHN2 as consistently hypermethylated and downregulated in this disease (Spearman -0.71, p < 0.001). Mutations in TP53 which were found in more than half of the cohort (15/28) and Kazald1 hypomethylation were both were indicative of poor survival (p = 0.03, HR = 3.2 and p = 0.01, HR = 4.9 respectively). By integrating high-throughput mutational, gene expression and DNA methylation data, this study reveals for the first time the distinct molecular profile of small bowel adenocarcinoma and highlights potential clinically exploitable markers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Analysing public sentiment about future events, such as demonstration or parades, may provide valuable information while estimating the level of disruption and disorder during these events. Social media, such as Twitter or Facebook, provides views and opinions of users related to any public topics. Consequently, sentiment analysis of social media content may be of interest to different public sector organisations, especially in the security and law enforcement sector. In this paper we present a lexicon-based approach to sentiment analysis of Twitter content. The algorithm performs normalisation of the sentiment in an effort to provide intensity of the sentiment rather than positive/negative label. Following this, we evaluate an evidence-based combining function that supports the classification process in cases when positive and negative words co-occur in a tweet. Finally, we illustrate a case study examining the relation between sentiment of twitter posts related to English Defence League and the level of disorder during the EDL related events.