835 resultados para Panels of bamboo
Resumo:
The finite element method has been used to develop collapse mechanism maps for the shear response of sandwich panels with a stainless steel core comprising hollow struts. The core topology comprises either vertical tubes or inclined tubes in a pyramidal arrangement. The dependence of the elastic and plastic buckling modes upon core geometry is determined, and optimal geometric designs are obtained as a function of core density. For the hollow pyramidal core, strength depends primarily upon the relative density ρ̄ of the core with a weak dependence upon tube slenderness. At ρ̄ below about 3%, the tubes of the pyramidal core buckle plastically and the peak shear strength scales linearly with ρ̄. In contrast, at ρ̄ above 3%, the tubes do not buckle and a stable shear response is observed. The predictions of the current study are in excellent agreement with previous measurements on the shear strength of the hollow pyramidal core, and suggest that this core topology is attractive from the perspectives of both core strength and energy absorption. © 2011 Elsevier Ltd. All rights reserved.
Resumo:
The horizontal arching mechanism transfers horizontal earth pressures acting on flexible retaining wall panels to stiffer neighbouring elements via soil shear stresses. In this research, the horizontal arching mechanism and lateral displacements of fixed cantilever walls in a model basement are investigated using centrifuge tests. A series of six tests was carried out at 45 gravities where the panel widths and thicknesses around the model basement were varied, so that the effects of panel geometry and stiffness on horizontal arching could be studied. It is shown that panel crest displacements and base bending moments of the most flexible, narrow panels can be an order of magnitude smaller than conventional active earth pressure calculations would allow. It is suggested that the reduction of earth pressure acting on a panel is directly correlated to the mobilized soil shear strength and hence, soil shear strain. Earth pressure coefficients K are plotted against panel displacements normalized by the panel width, u/B, to simulate the reduction of K with increasing soil strain.An idealized K-u/B curve is introduced, characterised by a reference distortion (u/B) ref beyond which fully plastic soil arching can be inferred, and which is related to the corresponding reference shear strain γ ref at which soil strength is fully mobilized in element tests. © 2006 Taylor & Francis Group, London.
Resumo:
Data on sleeping site selection were collected for a group of black-and-white snub-nosed monkeys (Rhinopithecus bieti; around 80) at Mt. Fuhe, Yunnan, China (99degrees20'E, 26degrees25'N, about 3,000 m asl) from November 2000 to January 2002. At the site mainly three vegetation types were present in an elevation-ascending order: deciduous broad leaf forest, mixed coniferous and broad leaf forest, and dark coniferous forest. In addition, bamboo forest presented in areas burned in 1958. Sleeping sites (n = 10) were located in the coniferous forest, where trees were the tallest, bottommost branches were the highest, the diameter of crowns was the second largest, and the gradient of the ground was the steepest. Monkeys usually kept quiet during entering and staying at a sleeping site. The site choice and the quietness may be tactics to avoid potential predators. In the coniferous forest, however, monkeys did not sleep in the valley bottom where trees were the largest, but frequently slept in the middle of the slope towards the east/southeast, in the shadow of ridges in three other directions, to avoid strong wind and to access sunshine; in winter-spring, they ranged in a more southern and lower area than in summer-autumn. These may be behavioral strategies to minimize energy stress in the cold habitat. Monkeys often slept in the same sleeping site on consecutive nights, which reflected a reduced pressure of predation probably due to either the effectiveness of anti-predation through sleeping site selection, or the population decline of predators with increasing human activities in the habitat. The group's behavioral responses to interactive and sometimes conflicting traits of the habitat are site-specific and conform to expectations for a temperate zone primate.
Resumo:
The impact of a slug of dry sand particles against a metallic sandwich beam or circular sandwich plate is analysed in order to aid the design of sandwich panels for shock mitigation. The sand particles interact via a combined linear-spring-and-dashpot law whereas the face sheets and compressible core of the sandwich beam and plate are treated as rate-sensitive, elastic-plastic solids. The majority of the calculations are performed in two dimensions and entail the transverse impact of end-clamped monolithic and sandwich beams, with plane strain conditions imposed. The sand slug is of rectangular shape and comprises a random loose packing of identical, circular cylindrical particles. These calculations reveal that loading due to the sand is primarily inertial in nature with negligible fluid-structure interaction: the momentum transmitted to the beam is approximately equal to that of the incoming sand slug. For a slug of given incoming momentum, the dynamic deflection of the beam increases with decreasing duration of sand-loading until the impulsive limit is attained. Sandwich beams with thick, strong cores significantly outperform monolithic beams of equal areal mass. This performance enhancement is traced to the "sandwich effect" whereby the sandwich beams have a higher bending strength than that of the monolithic beams. Three-dimensional (3D) calculations are also performed such that the sand slug has the shape of a circular cylindrical column of finite height, and contains spherical sand particles. The 3D slug impacts a circular monolithic plate or sandwich plate and we show that sandwich plates with thick strong cores again outperform monolithic plates of equal areal mass. Finally, we demonstrate that impact by sand particles is equivalent to impact by a crushable foam projectile. The calculations on the equivalent projectile are significantly less intensive computationally, yet give predictions to within 5% of the full discrete particle calculations for the monolithic and sandwich beams and plates. These foam projectile calculations suggest that metallic foam projectiles can be used to simulate the loading by sand particles within a laboratory setting. © 2013 Elsevier Ltd.
Resumo:
The dynamic deformation of both edge clamped stainless steel sandwich panels with a pyramidal truss core and equal mass monolithic plates loaded by spherically expanding shells of dry and water saturated sand has been investigated, both experimentally and via a particle based simulation methodology. The spherically expanding sand shell is generated by detonating a sphere of explosive surrounded by a shell of either dry or water saturated synthetic sand. The measurements show that the sandwich panel and plate deflections decrease with increasing stand-off between the center of the charge and the front of the test structures. Moreover, for the same charge and sand mass, the deflections of the plates are significantly higher in the water saturated sand case compared to that of dry sand. For a given stand-off, the mid-span deflection of the sandwich panel rear faces was substantially less than that of the corresponding monolithic plate for both the dry and water saturated sand cases. The experiments were simulated via a coupled discrete-particle/ finite element scheme wherein the high velocity impacting sand is modeled by interacting particles while the plate is modeled within a Lagrangian finite element setting. The simulations are in good agreement with the measurements for the dry sand impact of both the monolithic and sandwich structures. However, the simulations underestimate the effect of stand-off in the case of the water saturated sand explosion, i.e. the deflections decrease more sharply with increasing stand-off in the experiments compared to the simulations. The simulations reveal that the momentum transmitted into the sandwich and monolithic plate structures by the sand shell is approximately the same, consistent with a small fluid-structure interaction effect. The smaller deflection of the sandwich panels is therefore primarily due to the higher bending strength of sandwich structures. © 2013 The Authors. Published by Elsevier Ltd. All rights reserved.
Resumo:
Sandwich panels with crushable foam cores have attracted significant interest for impulsive load mitigation. We describe a method for making a lightweight, energy absorbing, glass fiber composite sandwich structure and explore it is through thickness (out-of-plane) compressive response. The sandwich structure utilized corrugated composite cores constructed from delamination resistant 3D woven E-glass fiber textiles folded over triangular cross section prismatic closed cell, PVC foam inserts. The corrugated structure was stitched to 3D woven S2-glass fiber face sheets and infiltrated with a rubber toughened, impact resistant epoxy. The quasi-static compressive stress-strain response of the panels was experimentally investigated as a function of the strut width to length ratio and compared to micromechanical predictions. Slender struts failed by elastic (Euler) buckling which transitioned to plastic microbuckling as the strut aspect ratio increased. Good agreement was observed between experimental results and micromechanical predictions over the wide range of core densities investigated in the study.
Resumo:
The use of III-nitride-based light-emitting diodes (LEDs) is now widespread in applications such as indicator lamps, display panels, backlighting for liquid-crystal display TVs and computer screens, traffic lights, etc. To meet the huge market demand and lower the manufacturing cost, the LED industry is moving fast from 2 inch to 4 inch and recently to 6 inch wafer sizes. Although Al2O3 (sapphire) and SiC remain the dominant substrate materials for the epitaxy of nitride LEDs, the use of large Si substrates attracts great interest because Si wafers are readily available in large diameters at low cost. In addition, such wafers are compatible with existing processing lines for 6 inch and larger wafers commonly used in the electronics industry. During the last decade, much exciting progress has been achieved in improving the performance of GaN-on-Si devices. In this contribution, the status and prospects of III-nitride optoelectronics grown on Si substrates are reviewed. The issues involved in the growth of GaN-based LED structures on Si and possible solutions are outlined, together with a brief introduction to some novel in situ and ex situ monitoring/characterization tools, which are especially useful for the growth of GaN-on-Si structures.
Resumo:
Carbon fiber reinforced polymer (CFRP) composite sandwich panels with hybrid foam filled CFRP pyramidal lattice cores have been assembled from a carbon fiber braided net, 3D woven face sheets and various polymeric foams, and infused with an epoxy resin using a vacuum assisted resin transfer process. Sandwich panels with a fixed CFRP truss mass have been fabricated using a variety of closed cell polymer and syntactic foams, resulting in core densities ranging from 44-482kgm-3. The through thickness and in-plane shear modulus and strength of the cores increased with increasing foam density. The use of low compressive strength foams within the core was found to result in a significant reduction in the compressive strength contributed by the CFRP trusses. X-ray tomography led to the discovery that the trusses develop an elliptical cross-section shape during pressure assisted resin transfer. The ellipticity of the truss cross-sections increased, and the lattice contribution to the core strength decreased as the foam density was reduced. Micromechanical modeling was used to investigate the relationships between the mechanical properties and volume fractions of the core materials and truss topology of the hybrid core. The specific strength and moduli of the hybrid cores lay between those of the CFRP lattices and foams used to fabricate them. However, their volumetric and gravimetric energy absorptions significantly exceeded those of the materials from which they were fabricated. They compare favorably with other lightweight energy absorbing materials and structures. © 2013.
Resumo:
The residual tensile strength of glass fibre reinforced composites with randomly distributed holes and fragment impact damages have been investigated. Experiments have been performed on large scale panels and small scale specimens. A finite element model has been developed to predict the strength of multi-axial panels with randomly distributed holes. Further, an effective analytical model has been developed using percolation theory. The model gives an estimation of the residual strength as function of removed surface area caused by the holes. It is found that if 8% of the area is removed, the residual strength is approximately 50% of the un-damaged strength. © 2014 Published by Elsevier Ltd.
Resumo:
This paper describes part of the monitoring undertaken at Abbey Mills shaft F, one of the main shafts of Thames Water's Lee tunnel project in London, UK. This shaft, with an external diameter of 30 m and 73 m deep, is one of the largest ever constructed in the UK and consequently penetrates layered and challenging ground conditions (Terrace Gravel, London Clay, Lambeth Group, Thanet Sand Formation, Chalk Formation). Three out of the twenty 1-2 m thick and 84 m deep diaphragm wall panels were equipped with fibre optic instrumentation. Bending and circumferential hoop strains were measured using Brillouin optical time-domain reflectometry and analysis technologies. These measurements showed that the overall radial movement of the wall was very small. Prior to excavation during a dewatering trial, the shaft may have experienced three-dimensional deformation due to differential water pressures. During excavation, the measured hoop and bending strains of the wall in the chalk exceeded the predictions. This appears to be related to the verticality tolerances of the diaphragm wall and lower circumferential hoop stiffness of the diaphragm walls at deep depths. The findings from this case study provide valuable information for future deep shafts in London. © ICE Publishing: All rights reserved.
Resumo:
Mn2+-doped xBaO center dot 6Al(2)O(3) and BaMgAl10O17 phosphors were prepared by solid-state reaction. The investigation of vacuum ultraviolet (VUV) excitation spectra of these phosphors exhibits that 0.82BaO center dot 6Al(2)O(3):Mn2+ and BaMgAl10O17:Mn2+ have a stronger absorption than BaO center dot 6Al(2)O(3):Mn2+ at about 147 nm. The emission spectra under VUV excitation demonstrated that 0.82BaOBa center dot 6Al(2)O(3):Mn2+ and BaMgAl10O17:Mn2+ have a higher luminescent intensity than BaO center dot 6Al(2)O(3):Mn2+. The lifetime analysis indicates that they have similar decay times, indicating that 0.82BaOBa center dot 6Al(2)O(3):Mn2+ and BaMgAl10O17:Mn2+ can be used as luminescent materials for plasma display panels. We observed that the critical concentration of the Mn2+ ions by host excitation is different from that of Mn2+ direct excitation, revealing a different mechanism of energy transfer. The critical distance was calculated. A model was suggested to explain the process of the energy transfer from the host to the Mn2+ ions.
Resumo:
Rare earths are a series of minerals with special properties that make them essential for applications including miniaturized electronics, computer hard disks, display panels, missile guidance, pollution controlling catalysts, H-2-storage and other advanced materials. The use of thermal barrier coatings (TBCs) has the potential to extend the working temperature and the life of a gas turbine by providing a layer of thermal insulation between the metallic substrate and the hot gas. Yttria (Y2O3), as one of the most important rare earth oxides, has already been used in the typical TBC material YSZ (yttria stabilized zirconia). In the development of the TBC materials, especially in the latest ten years, rare earths have been found to be more and more important. All the new candidates of TBC materials contain a large quantity of rare earths, such as R2Zr2O7 (R=La, Ce, Nd, Gd), CeO2-YSZ, RMeAl11O19 (R=La, Nd; Me=Mg, Ca, Sr) and LaPO4. The concept of double-ceramic-layer coatings based on the rare earth materials and YSZ is effective for the improvement of the thermal shock life of TBCs at high temperature.
Resumo:
Excitation and emission characteristics were reviewed for phosphors which were reported, applied, or suggested for the plasma display panel (PDP). Correlation of luminescence characteristics to the host crystal structure and the activator of the phosphor was explained. Improvements of the PDP phosphor for practicality were considered. (C) 2000 Elsevier Science S.A. All rights reserved.
Resumo:
One of the major challenges encountered in earthquake geotechnical physical modelling is to determine the effects induced by the artificial boundaries of the soil container on the dynamic response of the soil deposit. Over the past years, the use of absorbing material for minimising boundaries effects has become an increasing alternative solution, yet little systematic research has been carried out to quantify the dynamic performance of the absorbing material and the amount of energy dissipated by it. This paper aims to examine the effects induced by the absorbing material on the dynamic response of the soil, and estimate the amount of energy reduced by the absorbing boundaries. The absorbent material consisted of panels made of commercially available foams, which were placed on both inner sides of end-walls of the soil container. These walls are perpendicular to the shaking direction. Three types of foam with different mechanical properties were used in this study. The results were obtained from tests carried out using a shaking table and Redhill 110 sand for the soil deposit. It was found that a considerably amount of energy was dissipated, in particular within the frequency range close to the resonance of the soil deposit. This feature suggests that the presence of foams provides a significant influence to the dynamic response of the soil. The energy absorbed by the boundaries was also quantified from integrals of the Power Spectral Density of the accelerations. It was found that the absorbed energy ranged between a minimum of 41% to a maximum of 92% of the input levels, depending mainly on the foam used in the test. The effects provided by the acceleration levels and depth at which the energy was evaluated were practically negligible. Finally, practical guidelines for the selection of the absorbing material are provided.
Resumo:
In order to resist lateral loads, modern methods of timber construction are reliant on the in-plane shear strength of the walls orientated parallel to the applied action. In closed panel systems, the shear stresses are transferred to the foundations by the sole plate through the sheathing board, which is usually mechanically jointed to the timber frame. Since closed panels are delivered to site as single units, access to the internal bottom rail is rather restricted and novel, efficient solutions to secure the panel to the substrate are required. Sole plate fixing components for open and closed panel systems were tested in isolation and combination in order to validate a simplistic version of the weakest link theory. As a result, findings were embedded into a software database with a direct link to a previously developed sole plate and racking design application. This integrated process facilitates the structural optimization of the sole plate detail.