989 resultados para PT
Resumo:
For the first time, the coupling of fast transient kinetic switching and the use of an isotopically labelled reactant (15NO) has allowed detailed analysis of the evolution of all the products and reactants involved in the regeneration of a NOx storage reduction (NSR) material. Using realistic regeneration times (ca. 1 s) for Pt, Rh and Pt/Rh-containing Ba/Al2O3 catalysts we have revealed an unexpected double peak in the evolution of nitrogen. The first peak occurred immediately on switching from lean to rich conditions, while the second peak started at the point at which the gases switched from rich to lean. The first evolution of nitrogen occurs as a result of the fast reaction between H2 and/or CO and NO on reduced Rh and/or Pt sites. The second N2 peak which occurs upon removal of the rich phase can be explained by reaction of stored ammonia with stored NOx, gas phase NOx or O2. The ammonia can be formed either by hydrolysis of isocyanates or by direct reaction of NO and H2.
The study highlights the importance of the relative rates of regeneration and storage in determining the overall performance of the catalysts. The performance of the monometallic 1.1%Rh/Ba/Al2O3 catalyst at 250 and 350 °C was found to be dependent on the rate of NOx storage, since the rate of regeneration was sufficient to remove the NOx stored in the lean phase. In contrast, for the monometallic 1.6%Pt/Ba/Al2O3 catalyst at 250 °C, the rate of regeneration was the determining factor with the result that the amount of NOx stored on the catalyst deteriorated from cycle to cycle until the amount of NOx stored in the lean phase matched the NOx reduced in the rich phase. On the basis of the ratio of exposed metal surface atoms to total Ba content, the monometallic 1.6%Pt/Ba/Al2O3 catalyst outperformed the Rh-containing catalysts at 250 and 350 °C even when CO was used as a reductant.
Resumo:
CO multipulse temporal analysis of products (TAP) experiments were used to characterize a ceria-supported platinum catalyst after various oxidative and reductive pretreatments using O-2, H2O, CO2, and H-2. Based on the amount of CO consumed, using the final CO-saturated catalyst composition as the common state point, the oxidatively pretreated catalyst could be described using a general scale. From a kinetic analysis of the CO multipulse responses, two kinetic regimes corresponding to two types of active sites could be identified. As the temperature was raised, the number of the most active sites did not change while the amount of the less active site increased. Comparison of the number of active sites determined from the TAP data reported herein with that determined by a previous steady-state isotope transient kinetic analysis experiment showed excellent agreement. This correlation indicates that the (very fast response) TAP experiments can provide information regarding the number and type of active sites that are relevant to a catalyst under real reaction conditions. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
The present work emphasizes the importance of including a full quantitative analysis when in situ operando methods are used to investigate reaction mechanisms and reaction intermediates. The fact that some surface species exchange at a similar rate to the reaction product during isotopic transients is a necessary but not sufficient criterion for participation as a key reaction intermediate. This is exemplified here in the case of highly active low-temperature water-gas shift (WGS) catalysts based on gold and platinum. Operando DRIFTS data, isotopic exchanges, and DRIFTS calibration curves relating the concentration of formate species to the corresponding DRIFTS band intensity were combined to obtain a quantitative measure of the specific rate of formate decomposition. Despite displaying a rapid isotopic exchange rate (sometimes as fast as that of the reaction product CO2), the concentration of formates seen by DRIFTS was found to account for at most only 10% of the CO2 produced under the experimental conditions reported herein. These new results obtained on Au/CeZrO4 and Pt/CeO2 preparations (which are among the most active low-temperature WGS catalysts reported to date), led to the same conclusions regarding the minor role of IR-observable formates as those obtained in the case of less active Au/Ce(La)O-2 and Pt/ZrO2 catalysts. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
The present report investigates the role of formate species as potential reaction intermediates for the WGS reaction (CO + H2O -> CO2 + H-2) over a Pt-CeO2 catalyst. A combination of operando techniques, i.e., in situ diffuse reflectance FT-IR (DRIFT) spectroscopy and mass spectrometry (MS) during steady-state isotopic transient kinetic analysis (SSITKA), was used to relate the exchange of the reaction product CO2 to that of surface formate species. The data presented here suggest that a switchover from a non-formate to a formate-based mechanism could take place over a very narrow temperature range (as low as 60 K) over our Pt-CeO2 catalyst. This observation clearly stresses the need to avoid extrapolating conclusions to the case of results obtained under even slightly different experimental conditions. The occurrence of a low-temperature mechanism, possibly redox or Mars van Krevelen-like, that deactivates above 473 K because of ceria over-reduction is suggested as a possible explanation for the switchover, similarly to the case of the CO-NO reaction over Cu, I'd and Rh-CeZrOx (see Kaspar and co-workers [1-3]). (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
RAIRS experiments have been performed to investigate the adsorption of NO on Pt{211}. Results show that adsorption is complex and strongly temperature dependent. At 307 K, three bands are seen at saturation with frequencies of 1801, 1609, and 1576 cm(-1). However, at 120 K only two bands, at 1688 and 1620 cm(-1), are observed. To help with the assignment of these vibrational bands, DFT calculations were also performed. The calculations show that a bridged NO species, bonded to the step edge, is the most stable species on the surface and gives rise to the band observed at 1610-1620 cm(-1). The calculations also suggest that the temperature dependence of NO adsorption on Ptf{211} can be assigned to NO dissociation which occurs at room temperature but not at 120 K. In particular, the RAIRS band observed at 1801 cm(-1), which is observed on adsorption at 307 K but not at 120 K, is tentatively assigned to the formation of an O-NO complex. This species forms when a NO molecule bonds on top of an O atom, which results from the dissociation of NO on the Pt{211} surface at room temperature.
Resumo:
Catalytic formation of N2O and NO2 were studied employing density functional theory with generalized gradient approximations, in order to investigate the microscopic reaction pathways of these catalytic processes on a Pt(111) surface. Transition states and reaction barriers for the addition of chemisorbed N or chemisorbed O to NO(ads) producing N2O and NO2, respectively, were calculated. The N2O transition state involves bond formation across the hcp hollow site with an associated reaction barrier of 1.78 eV. NO2 formation favors a fcc hollow site transition state with a barrier of 1.52 eV. The mechanisms for both reactions are compared to CO oxidation on the same surface. The activation of the chemisorbed NO and the chemisorbed N or O from the energetically stable initial state to the transition state are both significant contributors to the overall reaction barrier E-a, in contrast to CO oxidation in which the activation of the O-(ads) is much greater than CO(ads) activation. (C) 2002 American Institute of Physics.
Resumo:
Methane activation is a crucial step in the conversion of methane to valuable oxygenated products. In heterogeneous catalysis, however, methane activation often leads to complete dissociation: If a catalyst can activate the first C-H bond in CH4, it can often break the remaining C-H bonds. In this study, using density functional theory, we illustrate that single C-H bond activation in CH4 is possible. We choose a model system which consists of isolated Pt atoms on a MoO3(010) surface. We find that the Pt atoms on this surface can readily activate the first C-H bond in methane. The reaction barrier of only 0.3 eV obtained in this study is significantly lower than that on a Pt(111) surface. We also find, in contrast to the processes on pure metal surfaces, that the further dehydrogenation of methyl (CH3) is very energetically unfavorable on the MoO3-supported Pt catalyst. (C) 2002 American Institute of Physics.
Resumo:
Density-functional theory has been used to investigate the chemisorption of S, SH, and H2S as well as the coadsorption of S and H and SH and H on Pt(111). In addition reaction pathways and energy profiles for the conversion of adsorbed S and H into gas-phase H2S have been determined. It has been found that S, SH, and H2S bind preferentially at face-centered-cubic (fcc), bridge, and top sites, respectively. Both the S+H and SH+H reactions have high barriers (similar to1 eV) and high exothermicities (similar to1 eV). This reveals that adsorbed H2S and SH are highly unstable adsorbates on Pt(111) and that adsorbed S (and H) is the most stable SHX (X=0,1,2) intermediate on Pt(111) (C) 2001 American Institute of Physics.
Resumo:
Alloying metals is often used as an effective way to enhance the reactivity of surfaces. Aiming to shed light on the effect of alloying on reaction mechanisms, we carry out a comparative study of CO oxidation on Cu3Pt(111), Pt(111), and Cu(111) by means of density functional theory calculations. Alloying effects on the bonding sites and bonding energies of adsorbates, and the reaction pathways are investigated. It is shown that CO preferentially adsorbs on an atop site of Pt and O preferentially adsorbs on a fcc hollow site of three Cu atoms on Cu3Pt(111). It is also found that the adsorption energies of CO (or O-a) decreases on Pt (or Cu) on the alloy surface with respect to those on pure metals. More importantly, having identified the transition states for CO oxidation on those three surfaces, we found an interesting trend for the reaction barrier on the three surfaces. Similar to the adsorption energies, the reaction barrier on Cu3Pt possesses an intermediate value of those on pure Pt and Cu metals. The physical origin of these results has been analyzed in detail. (C) 2001 American Institute of Physics.
Resumo:
Density functional theory has been used to study the adsorption of hydroxyl at low and high coverages and also to investigate the nature of the intermediate in the H2O formation reaction on Pt(111). At low coverages [1/9 of a monolayer (ML) to 1/3 ML] OH binds preferentially at bridge and top sites with a chemisorption energy of similar to2.25 eV. At high coverages (1/2 ML to 1 ML) H bonding between adjacent hydroxyls causes: (i) an enhancement in OH chemisorption energy by about 15%; (ii) a strong preference for OH adsorption at top sites; and (iii) the formation of OH networks. The activation energy for the diffusion of isolated OH groups along close packed rows of Pt atoms is 0.1 eV. This low barrier coupled with H bonding between neighboring OH groups indicates that hydroxyls are susceptible to island formation at low coverages. Pure OH as well as coadsorbed OH and H can be ruled out as the observed low temperature intermediate in the water formation reaction. Instead we suggest that the intermediate consists of a mixed OH+H2O overlayer with a macroscopic surface coverage of 3/4 ML in a 2:1 ratio of OH and H2O. (C) 2001 American Institute of Physics.
Resumo:
The kinetics of the water-gas shift reaction Were Studied on a 0.2% Pt/CeO2 catalyst between 177 and 300 degrees C over a range of CO and steam pressures. A rate decrease with increasing partial pressure of CO was experimentally observed over this sample, confirming that a negative order in CO can occur under certain conditions at low temperatures. The apparent reaction order of CO measured at 197 degrees C was about -0.27. This value is significantly larger than that (i.e, -0.03) reported by Ribeiro and co-workers [A.A. Phatak, N. Koryabkina, S. Rai, J.L. Ratts, W. Ruettinger, R.J. Farrauto, G.E. Blau, W.N. Delgass, F.H. Ribeiro, Catal. Today 123 (2007) 224] at a similar temperature. A kinetic peculiarity was also evidenced, i.e. a maximum of the reaction rate as a function of the CO concentration or possibly a kinetic break, which is sometimes observed in the oxidation of simple molecules. These observations support the idea that competitive adsorption of CO and H2O play an essential role in the reaction mechanism. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The mechanism for the formation of NH3 during the NO-H-2 reaction over Pt/ZrO2 was studied. Steady-state isotopic transient kinetic analysis was carried out with isotopic switching from (NO)-N-15-D-2 to (NO)-N-14-D-2, and the results revealed that formation of N-2 and N2O was associated with linearly adsorbed NO on the Pt surface, whereas ammonia formation was associated with NDx species adsorbed on ZrO2. The adsorbed NHx species were not observed on the surface of ZrO2 during NH3 adsorption. From transient kinetic experiments, the formation rates of NHx species and of gaseous NH3 agreed with each other, suggesting that the NHx species on ZrO2 was an ammonia intermediate. The NDx species did not react with D-2 directly, but H-D exchange occurred easily. The addition of H2O to the NO-H-2 feed gas enhanced the formation of NH3. In situ diffuse reflectance spectra and transient kinetic analysis revealed that H2O enhanced the conversion of NHx species to NH3.