941 resultados para POLYMERIC REINFORCEMENT


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: This paper focuses on the characterization of polymeric micelle-forming tuberculostatic prodrugs and the antimycobacterial activity of these prodrugs.Method: By the condensation of hydroxymethylpyrazinamide, isoniazid and rifampin with free carboxyl groups on the copolymer poly(ethyleneglycol)-poly(aspartic acid), micelle-forming carrier-drug conjugates were obtained. These micelles were characterized by dynamic light scattering, to measure the micelle diameter; by acid-base titration, to determine the percentage of carboxylic groups occupied by the tuberculostatic; by Sudan III solubility tests, to estimate the critical micelle concentration (CMC); and visual control and spectrophotometric measurement, to determine the stability of micelles. These micelles were tested in vitro against several Mycobacterium strains.Results: As expected, the size and distribution of the micelle-forming tuberculostatic prodrugs found to be small (78.2nm, 84.2nm and 98.9 nm) while the level of the drug conjugated was high (65.02-85.7%). Furthermore, the micelles were stable in vitro, exhibiting a low level of CMC and stronger antimycobacterial activity than the original drugs.Conclusion: the results demonstrate that polymeric micelles can be used as efficient carriers for drugs, which alone, exhibit undesired pharmacokinetics, poor solubility, and low stability. The synthesized micelle-forming tuberculostatic prodrugs opens a perspective of alternative prodrugs that prolong action and decrease the toxicity of the tuberculostatic drugs of choice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

On-line learning methods have been applied successfully in multi-agent systems to achieve coordination among agents. Learning in multi-agent systems implies in a non-stationary scenario perceived by the agents, since the behavior of other agents may change as they simultaneously learn how to improve their actions. Non-stationary scenarios can be modeled as Markov Games, which can be solved using the Minimax-Q algorithm a combination of Q-learning (a Reinforcement Learning (RL) algorithm which directly learns an optimal control policy) and the Minimax algorithm. However, finding optimal control policies using any RL algorithm (Q-learning and Minimax-Q included) can be very time consuming. Trying to improve the learning time of Q-learning, we considered the QS-algorithm. in which a single experience can update more than a single action value by using a spreading function. In this paper, we contribute a Minimax-QS algorithm which combines the Minimax-Q algorithm and the QS-algorithm. We conduct a series of empirical evaluation of the algorithm in a simplified simulator of the soccer domain. We show that even using a very simple domain-dependent spreading function, the performance of the learning algorithm can be improved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The well-known polymeric precursor route is a simple and low-cost sol-gel method based on the preparation of an aqueous precursor solution of metals followed by the addition of a water-soluble polymer. This method consists of a polyesterification process between a metal chelate complex by using a hydroxycarboxylic acid and a polyhydroxy alcohol. In this work, citric acid (CA), tartaric acid (TA) and ethylenediaminetetraacetic acid (EDTA) are used as the hydroxycarboxylic acid and ethylene glycol (EG) is used as the polyhydroxy alcohol. The effects of the precursor pH solution, time and temperature of polymerization step as well as the combination of different chelating agents in order to obtain nanoscopic YBa2Cu3Oy samples were traced. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phenolic resins when heat treated in inert atmosphere up to 1000 degreesC become glassy polymeric carbon (GPC), a chemically inert and biocompatible material useful for medical applications, such as in the manufacture of heart valves and prosthetic devices. In earlier work we have shown that ion bombardment can modify the surface of GPC, increasing its roughness. The enhanced roughness, which depends on the species, energy and fluence of the ion beam, can improve the biocompatibility of GPC prosthetic artifacts. In this work, ion bombardment was used to make a layer of implanted ions under the surface to avoid the propagation of microcracks in regions where cardiac valves should have pins for fixation of the leaflets. GPC samples prepared at 700 and 1500 degreesC were bombarded with ions of silicon. carbon, oxygen and gold at energies of 5, 6, 8 and 10 MeV, respectively, and fluences between 1.0 x 10(13) and 1.0 x 10(16) ions/cm(2). Nanoindentation hardness characterization was used to compare bombarded with non-bombarded samples prepared at temperatures up to 2500 degreesC. The results with samples not bombarded showed that the hardness of GPC increases strongly with the heat treatment temperature. Comparison with ion bombarded samples shows that the hardness changes according to the ion used, the energy and fluence. (C) 2002 Elsevier B.V. B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A utilização de compósitos poliméricos na fabricação de aeronaves vem sendo cada vez mais intensa. em função disso, a possibilidade de ocorrer falhas em serviço de um componente fabricado em compósito polimérico torna-se cada vez maior. A análise de falhas de materiais compósitos ainda é um tema pouco explorado, principalmente no Brasil, porém vem tornando-se cada vez mais importante em apoio à área de prevenção e investigação de acidentes aeronáuticos. Este trabalho teve como objetivo a caracterização de fraturas em laminados unidirecionais de fibra de carbono de módulo intermediário com sistema de resina epóxi modificada, tipo 8552, em resistência ao cisalhamento interlaminar nas condições ambiente e saturado de umidade em câmara higrotérmica. A análise fractográfica no plano de falha dos laminados foi realizada por microscopias óptica e eletrônica de varredura. A comparação dos resultados mostrou que o condicionamento higrotérmico afetou significativamente a região de interface da resina sem alterar a adesão interfacial fibra/resina. Os aspectos de fratura presentes na região de resina, como cristas de galo e escarpas, e do reforço foram detalhados, podendo-se assim estabelecer a direção de propagação da trinca e caracterizar o modo de falha, por ser do tipo misto (arrancamento e cisalhamento simultaneamente).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SrBi4Ti4O15 (SBTi) thin films were obtained by the polymeric precursor method and crystallized in a domestic microwave oven. For comparison, films were also crystallized in a conventional furnace at 700 degrees C for 2 h. Structural and morphological characterization of the SBTi thin films was investigated by X-ray diffraction (XRD) and atomic force microscopy (AFM), respectively. Using platinum coated silicon substrates configuration, ferroelectric properties of the films were determined with remanent\polarization P-r and a coercive field E-c of 5.1 mu C/cm(2) and 135 kV/cm for the film thermally treated in the microwave oven and 5.4 mu C/cm(2) and 85 kV/cm for the film thermally treated in conventional furnace, respectively. The films thermally treated in the conventional furnace exhibited excellent fatigue-free characteristics up to 10(10) switching cycles indicating that SBTi thin films can be a promise material for use in non-volatile memories. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fiber reinforced polymer composites have been widely applied in the aeronautical field. However, composite processing, which uses unlocked molds, should be avoided in view of the tight requirements and also due to possible environmental contamination. To produce high performance structural frames meeting aeronautical reproducibility and low cost criteria, the Brazilian industry has shown interest to investigate the resin transfer molding process (RTM) considering being a closed-mold pressure injection system which allows faster gel and cure times. Due to the fibrous composite anisotropic and non homogeneity characteristics, the fatigue behavior is a complex phenomenon quite different from to metals materials crucial to be investigated considering the aeronautical application. Fatigue sub-scale specimens of intermediate modulus carbon fiber non-crimp multi-axial reinforcement and epoxy mono-component system composite were produced according to the ASTM 3039 D. Axial fatigue tests were carried out according to ASTM D 3479. A sinusoidal load of 10 Hz frequency and load ratio R = 0.1. It was observed a high fatigue interval obtained for NCF/RTM6 composites. Weibull statistical analysis was applied to describe the failure probability of materials under cyclic loads and fractures pattern was observed by scanning electron microscopy. (C) 2010 Published by Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of natural fibers as reinforcement in polymeric composites for technical applications has been a research subject of scientists during the last decade. There is a great interest in the application of sisal fiber as substitutes for glass fibers, motivated by potential advantages of weight saving, lower raw material price, and ecological advantages of using green resources which are renewable and biodegradable.Castor oil, a triglyceride vegetable that has hydroxyl groups, was reacted with 4,4' diphenylmethane diisocyanate (MDI) to produce the polyurethane matrix. Woven sisal fibers were used untreated and thermal treated at 60 C for 72h, and the composites were processed by compression molding.The present work study tensile behavior at four composites: dry sisal/polyurethane, humid sisal/polyurethane, dry sisal/phenolic and humid sisal/phenolic resin. The moisture content influences of sisal fibers on the mechanical behaviors were analyzed.Experimental results showed a higher tensile strength for the sisal/phenolic composites followed by sisal/polyurethane, respectively. In this research, sisal composites were also characterized by scanning electron microscopy. (C) 2011 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of ICM11

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The break of polymer chemical bonds may occur due to penetration of sun short wavelengths. In sanitary landfills for instance, ultraviolet radiation affects uncovered materials and can be dangerous during the installation of the liner and before the placement of the waste. Only the ultraviolet part of the light is harmful to the geosynthetic materials, moreover, each material is sensitive to a particular wavelength. This article evaluates the effects of UV degradation and condensation in black HDPE (1.0 and 1.5 mm) and white HDPE (textured - 1.0 mm) geomembrane that were tested in laboratory during 6 months. The tests were performed using a weatherometer assembled at EESC-USP in accordance to ASTM G154. The results have shown variations in punction and tear resistance after each period of exposure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work a biodegradable composite using the carnauba straw s powder as reinforcement on chitosan matrix polymeric were manufactured. Firstly, were carried out the chemistry characterization of the carnauba straw s powder before and after treatments with NaOH and hexane. Goering and Van Soest method (1970), flotation test, moisture absorption, FTIR, TG/DTG, DSC and SEM have also being carried out. Composites were developed with variations in granulometry and in powder concentrations. They were characterized by TG/DTG, SEM and mechanicals properties. The results of chemical composition showed that the carnauba straw s powder is composed of 41% of cellulose; 28,9% of hemicellulose and 14% of lignin.The flotation test have indicated that the chemical treatment with NaOH decreased the powder s hidrophilicity.The thermal analysis showed increased of thermal stability of material after treatments. The results of FTIR and SEM revealed the removal of soluble materials from the powder (hemicelluloses and lignin), the material became rougher and clean. The composites obtained showed that the mechanicals properties of the composites were decreased in respect at chitosan films, and the composites with the powder at 150 Mesh showed less variation in the modulus values. The speed test of 10 mm/min showed the better reproducibility of the results and is in agreement to the standard ASTM D638. The SEM analysis of fracture showed the low adhesion between the fiber/matrix. The increase of volume of powder in the composite caused a decrease in values of stress and strain for the samples with untreated powder and treated with hexane. The composite with 50% of the powder s treated in NaOH didn t have significant variation in the values of stress and strain as compared with the composites with 10% of the powder, showing that the increase in the volume of fiber didn t affect the stress and strain of the composite. Thereby, it is concluded that the manufacture of polymeric composites of chitosan using carnauba straw s powder can be done, without need for pre-treatment of reinforcement, become the couple of carnauba straw s powder-chitosan a good alternative for biodegradable composites