936 resultados para PIG-LIVER
Resumo:
Introduction
PET-computed tomography (PET-CT) is a useful staging imaging modality in colorectal liver metastases (CRLM). This study aimed to determine whether PET-CT parameters, standardized uptake value (SUV) and reconstructed tumour volume (RTV), are predictors of prognosis and survival.
Methods
A study of all resectable CRLM patients in the regional HPB unit from 2007–2009 was performed. Preoperative PET-CT scans were retrospectively reviewed; SUV, diameter and RTV for each lesion was recorded. Correlation analysis was performed with other pathological and biochemical parameters, by Pearson’s correlation analysis. Survival analysis was performed using Cox regression hazard model. A P value of less than 0.05 was considered statistically significant.
Results
A total of 79 patients were included. SUV moderately correlated with tumour diameter, both PET-CT (r=0.4927; P<0.0001) and histology (r=0.4513; P=0.0003); RTV (r=0.4489; P<0.001), preoperative carcinoembryonic antigen (CEA) (r=0.4977; P=0.0001), and postoperative CEA (r=0.3727; P=0.004). Multivariate analysis found that an independent predictor of SUVmax was preoperative CEA (P=0.03). RTV strongly correlated with preoperative CEA (r=0.9389; P<0.0001). SUV and RTV had a negative effect on survival.
Conclusion
PET-CT, in the setting of CRLM, may have a prognostic role in assessing survival. Although no definite conclusions can be drawn regarding the prognostic role of SUV and RTV, it acts to reinforce the need for further prospective studies to validate these findings.
Resumo:
Alcohol-induced liver injury is the most common liver disease in which fatty acid metabolism is altered. It is thought that altered NAD+/NADH redox potential by alcohol in the liver causes fatty liver by inhibiting fatty acid oxidation and the activity of tricarboxylic acid cycle reactions. β-Lapachone (βL), a naturally occurring quinone, has been shown to stimulate fatty acid oxidation in an obese mouse model by activating adenosine monophosphate-activated protein kinase (AMPK). In this report, we clearly show that βL reduced alcohol-induced hepatic steatosis and induced fatty acid oxidizing capacity in ethanol-fed rats. βL treatment markedly decreased hepatic lipids while serum levels of lipids and lipoproteins were increased in rats fed ethanol-containing liquid diets with βL administration. Furthermore, inhibition of lipolysis, enhancement of lipid mobilization to mitochondria and upregulation of mitochondrial β-oxidation activity in the soleus muscle were observed in ethanol/βL-treated animals compared to the ethanol-fed rats. In addition, the activity of alcohol dehydrogenase, but not aldehyde dehydrogenase, was significantly increased in rats fed βL diets. βL-mediated modulation of NAD+/NADH ratio led to the activation of AMPK signaling in these animals. Conclusion: Our results suggest that improvement of fatty liver by βL administration is mediated by the upregulation of apoB100 synthesis and lipid mobilization from the liver as well as the direct involvement of βL on NAD+/NADH ratio changes, resulting in the activation of AMPK signaling and PPARα-mediated β-oxidation. Therefore, βL-mediated alteration of NAD+/NADH redox potential may be of potential therapeutic benefit in the clinical setting.
Resumo:
Aims: To build a population pharmacokinetic model that describes the apparent clearance of tacrolimus and the potential demographic, clinical and genetically controlled factors that could lead to inter-patient pharmacokinetic variability within children following liver transplantation.
Methods: The present study retrospectively examined tacrolimus whole blood pre-dose concentrations (n = 628) of 43 children during their first year post-liver transplantation. Population pharmacokinetic analysis was performed using the non-linear mixed effects modelling program (nonmem) to determine the population mean parameter estimate of clearance and influential covariates.
Results: The final model identified time post-transplantation and CYP3A5*1 allele as influential covariates on tacrolimus apparent clearance according to the following equation:
TVCL=12.9×(Weight /13.2)0.75×EXP(-0.00158×TPT)×EXP(0.428×CYP3A5)
where TVCL is the typical value for apparent clearance, TPT is time post-transplantation in days and the CYP3A5 is 1 where*1 allele is present and 0 otherwise. The population estimate and inter-individual variability (%CV) of tacrolimus apparent clearance were found to be 0.977 l h kg (95% CI 0.958, 0.996) and 40.0%, respectively, while the residual variability between the observed and predicted concentrations was 35.4%.
Conclusion: Tacrolimus apparent clearance was influenced by time post-transplantation and CYP3A5 genotypes. The results of this study, once confirmed by a large scale prospective study, can be used in conjunction with therapeutic drug monitoring to recommend tacrolimus dose adjustments that take into account not only body weight but also genetic and time-related changes in tacrolimus clearance. © 2013 The British Pharmacological Society.
Resumo:
This theatre performance, produced in association with An Grianan Theatre, Letterkenny, contributes to two strands of research: theatre and mental health and Irish Physical Theatre in the 1990s.
Resumo:
Background: Fasciola spp. liver fluke cause pernicious disease in humans and animals. Whilst current control is unsustainable due to anthelmintic resistance, gene silencing (RNA interference, RNAi) has the potential to contribute to functional validation of new therapeutic targets. The susceptibility of juvenile Fasciola hepatica to double stranded (ds)RNA-induced RNAi has been reported. To exploit this we probe RNAi dynamics, penetrance and persistence with the aim of building a robust platform for reverse genetics in liver fluke. We describe development of standardised RNAi protocols for a commercially-available liver fluke strain (the US Pacific North West Wild Strain), validated via robust transcriptional silencing of seven virulence genes, with in-depth experimental optimisation of three: cathepsin L (FheCatL) and B (FheCatB) cysteine proteases, and a σ-class glutathione transferase (FheσGST).
Methodology/Principal Findings: Robust transcriptional silencing of targets in both F. hepatica and Fasciola gigantica juveniles is achievable following exposure to long (200–320 nt) dsRNAs or 27 nt short interfering (si)RNAs. Although juveniles are highly RNAi-susceptible, they display slower transcript and protein knockdown dynamics than those reported previously. Knockdown was detectable following as little as 4h exposure to trigger (target-dependent) and in all cases silencing persisted for ≥25 days following long dsRNA exposure. Combinatorial silencing of three targets by mixing multiple long dsRNAs was similarly efficient. Despite profound transcriptional suppression, we found a significant time-lag before the occurrence of protein suppression; FheσGST and FheCatL protein suppression were only detectable after 9 and 21 days, respectively.
Conclusions/Significance: In spite of marked variation in knockdown dynamics, we find that a transient exposure to long dsRNA or siRNA triggers robust RNAi penetrance and persistence in liver fluke NEJs supporting the development of multiple-throughput phenotypic screens for control target validation. RNAi persistence in fluke encourages in vivo studies on gene function using worms exposed to RNAi-triggers prior to infection.
Resumo:
Clozapine, whilst associated commonly with a transient and benign increase in liver enzymes, has also been associated with varying presentations of hepatitis in existing case reports. This report describes what we believe to be the first documented case of acute liver injury and pleural effusion associated with clozapine, resolving after cessation of the agent. The case supports existing literature in advocating a high index of suspicion, particularly in the 4-5 weeks following clozapine initiation, when considering nonspecific clinical symptoms and signs.
Resumo:
PURPOSE: The pig eye is similar to the human eye in terms of anatomy, vasculature, and photoreceptor distribution, and therefore provides an attractive animal model for research into retinal disease. The purpose of this study was to characterize retinal histology in the developing and mature pig retina using antibodies to well established retinal cell markers commonly used in rodents.
METHODS: Eyes were enucleated from fetuses in the 9th week of gestation, 1 week old piglets and 6 months old adult animals. Eyeglobes were fixed and cryosectioned. A panel of antibodies to well established retinal markers was employed for immunohistochemistry. Fluorescently labeled secondary antibodies were used for signal detection, and images were acquired by confocal microscopy. Mouse retina at postnatal day (P) 5 was used as a reference for this study to compare progression of histogenesis. Most of the primary antibodies have previously been used on mouse tissue.
RESULTS: Most of the studied markers were detected in midgestation pig retina, and the majority had a similar distribution in pig as in P5 mouse retina. However, rhodopsin immunolabeling was detected in pig retina at midgestation but not in P5 mouse retina. Contrary to findings in all rodents, horizontal cells were Islet1-positive and cones were calbindin-immunoreactive in pig retina, as has also been shown for the primate retina. Recoverin and rhodopsin immunolabeling revealed an increase in the length of photoreceptor segments in 6 months, compared to 1 week old animals.
CONCLUSIONS: Comparison with the published data on human retina revealed similar marker distribution and histogenesis progression in the pig and human retina, supporting the pig as a valuable animal model for studies on retinal disease and repair. Furthermore, this study provides information about the dynamics of retinal histogenesis in the pig and validates a panel of antibodies that reliably detects developing and mature retinal cell phenotypes in the pig retina.
Resumo:
Background: Maternal smoking is one of the most important modifiable risk factors for low birthweight, which is strongly associated with increased cardiometabolic disease risk in adulthood. Maternal smoking reduces the levels of the methyl donor vitamin B12 and is associated with altered DNA methylation at birth. Altered DNA methylation may be an important mechanism underlying increased disease susceptibility; however, the extent to which this can be induced in the developing fetus is unknown.
Methods: In this retrospective study, we measured concentrations of cobalt, vitamin B12, and mRNA transcripts encoding key enzymes in the 1-carbon cycle in 55 fetal human livers obtained from 11 to 21 weeks of gestation elective terminations and matched for gestation and maternal smoking. DNA methylation was measured at critical regions known to be susceptible to the in utero environment. Homocysteine concentrations were analyzed in plasma from 60 fetuses.
Results: In addition to identifying baseline sex differences, we found that maternal smoking was associated with sex-specific alterations of fetal liver vitamin B12, plasma homocysteine and expression of enzymes in the 1-carbon cycle in fetal liver. In the majority of the measured parameters which showed a sex difference, maternal smoking reduced the magnitude of that difference. Maternal smoking also altered DNA methylation at the imprinted gene IGF2 and the glucocorticoid receptor (GR/NR3C1).
Conclusions: Our unique data strengthen studies linking in utero exposures to altered DNA methylation by showing, for the first time, that such changes are present in fetal life and in a key metabolic target tissue, human fetal liver. Furthermore, these data propose a novel mechanism by which such changes are induced, namely through alterations in methyl donor availability and changes in 1-carbon metabolism.
Resumo:
The liver fluke, Fasciola hepatica is an economically important pathogen of sheep and cattle and has been described by the WHO as a re-emerging zoonosis. Control is heavily reliant on the use of drugs, particularly triclabendazole and as a result resistance has now emerged. The population structure of F. hepatica is not well known, yet it can impact on host-parasite interactions and parasite control with drugs, particularly regarding the spread of triclabendazole resistance. We have identified 2448 potential microsatellites from 83Mb of F. hepatica genome sequence using msatfinder. Thirty-five loci were developed and optimised for microsatellite PCR, resulting in a panel of 15 polymorphic loci, with a range of three to 15 alleles. This panel was validated on genomic DNA from 46 adult F. hepatica; 38 liver flukes sourced from a Northwest abattoir, UK and 8 liver flukes from an established isolate (Shrewsbury; Ridgeway Research). Evidence for null alleles was found at four loci (Fh_1, Fh_8, Fh_13 and Fh_14), which showed markedly higher levels of homozygosity than the remaining 11 loci. Of the 38 liver flukes isolated from cattle livers (n=10) at the abattoir, 37 genotypes were identified. Using a multiplex approach all 15 loci could be amplified from several life cycle stages that typically yield low amounts of DNA, including metacercariae, the infective life cycle stage present on pasture, highlighting the utility of this multiplex microsatellite panel. This study reports the largest panel of microsatellite markers available to date for population studies of F. hepatica and the first multiplex panel of microsatellite markers that can be used for several life cycle stages.