985 resultados para PEGINTERFERON ALPHA-2B
Resumo:
Transgenic mice were generated by using the alpha-myosin heavy chain promoter coupled to the coding sequence of a constitutively active mutant alpha 1B-adrenergic receptor (AR). These transgenic animals demonstrated cardiac-specific expression of this alpha 1-AR with resultant activation of phospholipase C as shown by increased myocardial diacylglycerol content. A phenotype consistent with cardiac hypertrophy developed in adult transgenic mice with increased heart/body weight ratios, myocyte cross-sectional areas, and ventricular atrial natriuretic factor mRNA levels relative to nontransgenic controls. These transgenic animals may provide insight into the biochemical triggers that induce hypertrophy in cardiac disease and serve as a convenient experimental model for studies of this condition.
Resumo:
A number of lines of evidence suggest that cross-talk exists between the cellular signal transduction pathways involving tyrosine phosphorylation catalyzed by members of the pp60c-src kinase family and those mediated by guanine nucleotide regulatory proteins (G proteins). In this study, we explore the possibility that direct interactions between pp60c-src and G proteins may occur with functional consequences. Preparations of pp60c-src isolated by immunoprecipitation phosphorylate on tyrosine residues the purified G-protein alpha subunits (G alpha) of several heterotrimeric G proteins. Phosphorylation is highly dependent on G-protein conformation, and G alpha(GDP) uncomplexed by beta gamma subunits appears to be the preferred substrate. In functional studies, phosphorylation of stimulatory G alpha (G alpha s) modestly increases the rate of binding of guanosine 5'-[gamma-[35S]thio]triphosphate to Gs as well as the receptor-stimulated steady-state rate of GTP hydrolysis by Gs. Heterotrimeric G proteins may represent a previously unappreciated class of potential substrates for pp60c-src.
Resumo:
The alpha 1B-adrenergic receptor (alpha 1B-ADR) is a member of the G-protein-coupled family of transmembrane receptors. When transfected into Rat-1 and NIH 3T3 fibroblasts, this receptor induces focus formation in an agonist-dependent manner. Focus-derived, transformed fibroblasts exhibit high levels of functional alpha 1B-ADR expression, demonstrate a catecholamine-induced enhancement in the rate of cellular proliferation, and are tumorigenic when injected into nude mice. Induction of neoplastic transformation by the alpha 1B-ADR, therefore, identifies this normal cellular gene as a protooncogene. Mutational alteration of this receptor can lead to activation of this protooncogene, resulting in an enhanced ability of agonist to induce focus formation with a decreased latency and quantitative increase in transformed foci. In contrast to cells expressing the wild-type alpha 1B-ADR, focus formation in "oncomutant"-expressing cell lines appears constitutively activated with the generation of foci in unstimulated cells. Further, these cell lines exhibit near-maximal rates of proliferation even in the absence of catecholamine supplementation. They also demonstrate an enhanced ability for tumor generation in nude mice with a decreased period of latency compared with cells expressing the wild-type receptor. Thus, the alpha 1B-ADR gene can, when overexpressed and activated, function as an oncogene inducing neoplastic transformation. Mutational alteration of this receptor gene can result in the activation of this protooncogene, enhancing its oncogenic potential. These findings suggest that analogous spontaneously occurring mutations in this class of receptor proteins could play a key role in the induction or progression of neoplastic transformation and atherosclerosis.
Resumo:
Pharmacologic, biochemical, and genetic analyses have demonstrated the existence of multiple alpha 2-adrenergic receptor (alpha 2AR) subtypes. We have cloned a human alpha 2AR by using the polymerase chain reaction with oligonucleotide primers homologous to conserved regions of the previously cloned alpha 2ARs, the genes for which are located on human chromosomes 4 (C4) and 10 (C10). The deduced amino acid sequence encodes a protein of 450 amino acids whose putative topology is similar to that of the family of guanine nucleotide-binding protein-coupled receptors, but whose structure most closely resembles that of the alpha 2ARs. Competition curve analysis of the binding properties of the receptor expressed in COS-7 cells with a variety of adrenergic ligands demonstrates a unique alpha 2AR pharmacology. Hybridization with somatic cell hybrids shows that the gene for this receptor is located on chromosome 2. Northern blot analysis of various rat tissues shows expression in liver and kidney. The unique pharmacology and tissue localization of this receptor suggest that this is an alpha 2AR subtype not previously identified by classical pharmacological or ligand binding approaches.
Resumo:
Regions of the hamster alpha 1-adrenergic receptor (alpha 1 AR) that are important in GTP-binding protein (G protein)-mediated activation of phospholipase C were determined by studying the biological functions of mutant receptors constructed by recombinant DNA techniques. A chimeric receptor consisting of the beta 2-adrenergic receptor (beta 2AR) into which the putative third cytoplasmic loop of the alpha 1AR had been placed activated phosphatidylinositol metabolism as effectively as the native alpha 1AR, as did a truncated alpha 1AR lacking the last 47 residues in its cytoplasmic tail. Substitutions of beta 2AR amino acid sequence in the intermediate portions of the third cytoplasmic loop of the alpha 1AR or at the N-terminal portion of the cytoplasmic tail caused marked decreases in receptor coupling to phospholipase C. Conservative substitutions of two residues in the C terminus of the third cytoplasmic loop (Ala293----Leu, Lys290----His) increased the potency of agonists for stimulating phosphatidylinositol metabolism by up to 2 orders of magnitude. These data indicate (i) that the regions of the alpha 1AR that determine coupling to phosphatidylinositol metabolism are similar to those previously shown to be involved in coupling of beta 2AR to adenylate cyclase stimulation and (ii) that point mutations of a G-protein-coupled receptor can cause remarkable increases in sensitivity of biological response.
Resumo:
The cDNA for the Syrian hamster alpha 1-adrenergic receptor has been cloned with oligonucleotides corresponding to the partial amino acid sequence of the receptor protein purified from DDT1MF-2 smooth muscle cells. The deduced amino acid sequence encodes a 515-residue polypeptide that shows the most sequence identity with the other adrenergic receptors and the putative protein product of the related clone G-21. Similarities with the muscarinic cholinergic receptors are also evident. Expression studies in COS-7 cells confirm that we have cloned the alpha 1-adrenergic receptor that couples to inositol phospholipid metabolism.
Resumo:
DDT1 MF-2 cells, which are derived from hamster vas deferens smooth muscle, contain alpha 1-adrenergic receptors (54,800 +/- 2700 sites per cell) that are coupled to stimulation of inositol phospholipid metabolism. Incubation of these cells with tumor-promoting phorbol esters, which stimulate calcium- and phospholipid-dependent protein kinase, leads to a marked attenuation of the ability of alpha 1-receptor agonists such as norepinephrine to stimulate the turnover of inositol phospholipids. This turnover was measured by determining the 32P content of phosphatidylinositol and phosphatidic acid after prelabeling of the cellular ATP pool with 32Pi. These phorbol ester-treated cells also displayed a decrease in binding affinity of cellular alpha 1 receptors for agonists with no change in antagonist affinity. By using affinity chromatography on the affinity resin Affi-Gel-A55414, the alpha 1 receptors were purified approximately equal to 300-fold from control and phorbol ester-treated 32Pi-prelabeled cells. As assessed by NaDodSO4/polyacrylamide gel electrophoresis, the Mr 80,000 alpha 1-receptor ligand-binding subunit is a phosphopeptide containing 1.2 mol of phosphate per mol of alpha 1 receptor. After phorbol ester treatment this increased to 3.6 mol of phosphate per mol of alpha 1 receptor. The effect of phorbol esters on norepinephrine-stimulated inositol phospholipid turnover and alpha 1-receptor phosphorylation showed the same rapid time course with a t1/2 less than 2 min. These results indicate that calcium- and phospholipid-dependent protein kinase may play an important role in regulating the function of receptors that are coupled to the inositol phospholipid cycle by phosphorylating and deactivating them.
Resumo:
BACKGROUND: We have previously shown that a functional polymorphism of the UGT2B15 gene (rs1902023) was associated with increased risk of prostate cancer (PC). Novel functional polymorphisms of the UGT2B17 and UGT2B15 genes have been recently characterized by in vitro assays but have not been evaluated in epidemiologic studies. METHODS: Fifteen functional SNPs of the UGT2B17 and UGT2B15 genes, including cis-acting UGT2B gene SNPs, were genotyped in African American and Caucasian men (233 PC cases and 342 controls). Regression models were used to analyze the association between SNPs and PC risk. RESULTS: After adjusting for race, age and BMI, we found that six UGT2B15 SNPs (rs4148269, rs3100, rs9994887, rs13112099, rs7686914 and rs7696472) were associated with an increased risk of PC in log-additive models (p < 0.05). A SNP cis-acting on UGT2B17 and UGT2B15 expression (rs17147338) was also associated with increased risk of prostate cancer (OR = 1.65, 95% CI = 1.00-2.70); while a stronger association among men with high Gleason sum was observed for SNPs rs4148269 and rs3100. CONCLUSIONS: Although small sample size limits inference, we report novel associations between UGT2B15 and UGT2B17 variants and PC risk. These associations with PC risk in men with high Gleason sum, more frequently found in African American men, support the relevance of genetic differences in the androgen metabolism pathway, which could explain, in part, the high incidence of PC among African American men. Larger studies are required.
Resumo:
BACKGROUND: Vertebrate skin appendages are constructed of keratins produced by multigene families. Alpha (α) keratins are found in all vertebrates, while beta (β) keratins are found exclusively in reptiles and birds. We have studied the molecular evolution of these gene families in the genomes of 48 phylogenetically diverse birds and their expression in the scales and feathers of the chicken. RESULTS: We found that the total number of α-keratins is lower in birds than mammals and non-avian reptiles, yet two α-keratin genes (KRT42 and KRT75) have expanded in birds. The β-keratins, however, demonstrate a dynamic evolution associated with avian lifestyle. The avian specific feather β-keratins comprise a large majority of the total number of β-keratins, but independently derived lineages of aquatic and predatory birds have smaller proportions of feather β-keratin genes and larger proportions of keratinocyte β-keratin genes. Additionally, birds of prey have a larger proportion of claw β-keratins. Analysis of α- and β-keratin expression during development of chicken scales and feathers demonstrates that while α-keratins are expressed in these tissues, the number and magnitude of expressed β-keratin genes far exceeds that of α-keratins. CONCLUSIONS: These results support the view that the number of α- and β-keratin genes expressed, the proportion of the β-keratin subfamily genes expressed and the diversification of the β-keratin genes have been important for the evolution of the feather and the adaptation of birds into multiple ecological niches.
Resumo:
Human alpha-lactalbumin (alpha-LA), a 123-residue calcium-binding protein, has been studied using (15)N NMR relaxation methods in order to characterize backbone dynamics of the native state at the level of individual residues. Relaxation data were collected at three magnetic field strengths and analyzed using the model-free formalism of Lipari and Szabo. The order parameters derived from this analysis are generally high, indicating a rigid backbone. A total of 46 residues required an exchange contribution to T(2); 43 of these residues are located in the alpha-domain of the protein. The largest exchange contributions are observed in the A-, B-, D-, and C-terminal 3(10)-helices of the alpha-domain; these residues have been shown previously to form a highly stable core in the alpha-LA molten globule. The observed exchange broadening, along with previous hydrogen/deuterium amide exchange data, suggests that this part of the alpha-domain may undergo a local structural transition between the well-ordered native structure and a less-ordered molten-globule-like structure.
Resumo:
This work shows that the proximal promoter of the mouse Afp gene contains a Ku binding site and that Ku binding is associated with down-regulation of the transcriptional activity of the Afp promoter. The Ku binding site is located in a segment able to adopt a peculiar structured form, probably a hairpin structure. Interestingly, the structured form eliminates the binding sites of the positive transcription factor HNF1. Furthermore, a DNAse hypersensitive site is detected in footprinting experiments done with extracts of AFP non-expressing hepatoma cells. These observations suggest that the structured form is stabilised by Ku and is associated with extinction of the gene in AFP non-expressing hepatic cells.
Resumo:
There are many factors in mucosal secretions that contribute to innate immunity and the 'first line of defence' at mucosal surfaces. Few studies, however, have investigated the effects of exercise on many of these 'defence' factors. The aim of the present study was to determine the acute effects of prolonged exercise on salivary levels of selected antimicrobial peptides (AMP) that have not yet been studied in response to exercise (HNP1-3 and LL-37) in addition to immunoglobulin A (IgA). A secondary objective was to assess the effects of exercise on saliva antibacterial capacity. Twelve active men exercised on a cycle ergometer for 2.5 h at approximately 60% of maximal oxygen uptake. Unstimulated whole saliva samples were obtained before and after exercise. There was a significant decrease (P < 0.05) in salivary IgA:osmolality ratio, following exercise, but IgA concentration and secretion rate were unaltered. Salivary HNP1-3 and LL-37 concentrations (P < 0.01 and P < 0.05, respectively), concentration:osmolality ratios (P < 0.01) and secretion rates (P < 0.01) all increased following exercise. Salivary antibacterial capacity (against E. coli) did not change. The increased concentration of AMPs in saliva may confer some benefit to the 'first line of defence' and could result from synergistic compensation within the mucosal immune system and/or airway inflammation and epithelial damage. Further study is required to determine the significance of such changes on the overall 'defence' capacity of saliva and how this influences the overall risk for infection.
Resumo:
Exercise can have deleterious effects on the secretion of salivary immunoglobulin A (s-IgA), which appears to be related to perturbations in sympatheticoadrenal activation (Teeuw et al., 2004). Caffeine, commonly used for its ergogenic properties is associated with increased sympathetic nervous system activity, and it has been previously shown that caffeine ingestion before intensive cycling enhances s-IgA responses during exercise (Bishop et al., 2006). Therefore, the aim of the present study was to examine the effect of a performance cereal bar, containing caffeine, before and during prolonged exhaustive cycling on exercise performance and the salivary secretion of IgA, alpha-amylase activity and cortisol. Using a randomised cross-over design and following a 10 – 12 hour overnight fast, 12 trained cyclists, mean (SEM) age: 21(1) yr; height: 179(2) cm; body mass: 73.6(2.5) kg; maximal oxygen uptake, VO2max: 57.9(1.2) completed 2.5 h of cycling at 60%VO2max (with regular water ingestion) on a stationary ergometer, which was followed by a ride to exhaustion at 75% VO2max. Immediately before exercise, and after 55 min and 115 min of exercise participants ingested a 0.9 MJ cereal bar containing 45 g carbohydrate, 5 g protein, 3 g fat and 100 mg of caffeine (CAF) or an isocaloric noncaffeine bar (PLA). Unstimulated timed saliva samples were collected immediately before exercise, after 70 min and 130 min of exercise, and immediately after the exhaustive exercise bout. Saliva was analysed for s-IgA, alpha-amylase activity and cortisol concentration. Saliva flow rates were determined to calculate the s-IgA secretion rate. Data were analysed using a 2-way repeated measures ANOVA and post-hoc t-tests with Holm Bonferroni adjustments applied where appropriate. Time to exhaustion was 35% longer in CAF compared with PLA ((2177 (0.2) vs 1615 (0.16) s; P < 0.05)). Saliva flow rate did not change significantly during the exercise protocol. Exercise was associated with elevations in s-IgA concentration (9% increase), s-IgA secretion rate (24% increase) and alpha-amylase activity (224% increase) post-exhaustion (P < 0.01), but there was no effect of CAF on these responses. Salivary cortisol concentration increased by 64% post-exhaustion in the CAF trial only (P < 0.05), indicating an increase in adrenal activity following caffeine ingestion. Values were 35.7 (5.5) and 19.6 (3.4) nmol/L post-exhaustion for CAF and PLA, respectively. These findings show that ingestion of a caffeine containing cereal bar during prolonged exhaustive cycling enhances endurance performance, increases salivary cortisol secretion post-exhaustion, but does not affect the exercise-induced increases in s-IgA or alpha-amylase activity.
Resumo:
Many benthic marine invertebrates, like barnacles, have a planktonic larval stage whose primary purpose is dispersal. How these species colonize suitable substrata is fundamental to understanding their evolution, population biology, and wider community dynamics. Unlike larval dispersal, settlement occurs on a relatively small spatial scale and involves larval behavior in response to physical and chemical characteristics of the substratum. Biogenic chemical cues have been implicated in this process. Their identification, however, has proven challenging, no more so than for the chemical basis of barnacle gregariousness, which was first described >50 years ago. We now report that a biological cue to gregarious settlement, the settlement-inducing protein complex (SIPC), of the major fouling barnacle Balanus amphitrite is a previously undescribed glycoprotein. The SIPC shares a 30% sequence homology with the thioester-containing family of proteins that includes the alpha sub(2)-macroglobulins. The cDNA (5.2 kb) of the SIPC encodes a protein precursor comprising 1,547 aa with a 17-residue signal peptide region. A number of structural characteristics and the absence of a thioester bond in the SIPC suggest that this molecule is a previously undescribed protein that may have evolved by duplication from an ancestral alpha sub(2)-macroglobulin gene. Although the SIPC is regarded as an adult cue that is recognized by the cyprid at settlement, it is also expressed in the juvenile and in larvae, where it may function in larva-larva settlement interactions.
Resumo:
Some advantages of a new dielectric detector, CR-39, are described in relation to the analysis of concentrations and distributions of α-particle emitters from a variety of materials. The detector provides an economic and versatile approach to many problems and complements conventional methods of analysis.