808 resultados para PBTE NANOCRYSTALS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A sensing system based on the photoinduced electron transfer of quantum dots (QDs) was designed to measure the interaction of anticancer drug and DNA, taking mitoxantrone (MTX) as a model drug. MTX adsorbed on the surface of QDs can quench the photoluminescence (PL) of QDs through the photoinduced electron-transfer process; and then the addition of DNA will bring the restoration of QDs PL intensity, as DNA can bind with MTX and remove it from QDs. Sensitive detection of MTX with the detection limit of 10 nmol L-1 and a linear detection range from 10 nmol L-1 to 4.5 mu mol L-1 was achieved. The dependence of PL intensity on DNA amount was successfully utilized to investigate the interactions between MTX and DNA. Both the binding constants and the sizes of binding site of MTX-DNA interactions were calculated based on the equations deduced for the PL recovery process. The binding constant obtained in our experiment was generally consistent with previous reports. The sensitive and speedy detection of MTX as well as the avoidance of modification or immobilization process made this system suitable and promising in the drug-DNA interaction studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A simple and sensitive assay system for glucose based on the glutathione (GSH)-capped CdTe quantum dots (QDs) was developed. GSH-capped CdTe QDs exhibit higher sensitivity to H2O2 produced from the glucose oxidase catalyzed oxidation Of glucose, and are also more biocompatible than other thiols-capped QDs. Based on the quenching of H2O2 on GSH-capped QDs, glucose can be detected. The detection conditions containing reaction time, the concentration of glucose oxidase and the sizes of QDs were optimized and the detection limits for glucose was determined to be 0.1 mu M; two detection ranges of glucose from 1.0 mu M to 0.5 mM and from 1.0 mM to 20 mM, respectively Were obtained. The detection limit was almost a 1000 times lower than other QDs-based optical glucose sensing systems. The developed glucose detection system was simple and facile with no need of complicated enzyme immobilization and modification of QDs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Large-scale GdVO4:Eu3+ nanowires with diameters of about 15 nm and lengths of several micrometers were achieved by a facile hydrothermal method in the presence of disodium ethylenediamine tetraacetate (Na2H2L). The influences of several parameters, such as pH value, reaction temperature, and molar ratio of Na2H2L to Gd3+ on the final products were investigated. The formation mechanism of the as-obtained GdVO4:Eu3+ nanowires is proposed on the basis of time-dependent experiments. It is found that the organic additive Na2H2L, which acts as a shape modifier, has a dynamic effect by adjusting the growth rates of different facets, resulting in the formation of the GdVO4:Eu3+ nanowires. The luminescent spectrum of GdVO4:Eu3+ nanowires shows the strong characteristic dominant emission of the Eu3+ ions at 614 nm.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sheaflike terbium phosphate hydrate hierarchical architectures composed of filamentary nanorods have been fabricated by a hydrothermal method. The X-ray diffraction patterns and thermogravimetric/differential thermal analysis investigations reveal that the obtained terbium phosphate hydrate has a structural formula of TbPO4 center dot H2O, which can be readily indexed to the hexagonal phase GdPO4 center dot nH(2)O in JCPDS file 39-0232. The evolution of the morphology of the products has been investigated in detail. It is found that the addition of CTAB and Na2H2L (disodium ethylenediamine tetraacetate) plays an important role in controlling the final morphology of the products. A possible formation mechanism of the sheaflike architectures was proposed according to the experimental results and analysis. In addition, the phase structure of the product changes to monoclinic phase when it is annealed at 750 degrees C for 2 h in N-2-H-2 atmosphere. Tetragonal chase TbPO4 can be obtained when annealed temperature increases to 1150 degrees C.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Uniform octahedral LuVO4 microcrystals have been successfully prepared through a designed two-step hydrothermal method. One-dimensional lutetium precursor was first prepared through a simple hydrothermal route. Subsequently, a well-shaped octahedral LuVO4 sample was synthesized at the expense of the wirelike precursors during the hydrothermal process. The whole process in this method was carried out in aqueous conditions without the use of any organic solvents, surfactant, or catalyst. The conversion process from nanowire precursor to octahedral product has been investigated in detail. The LuVO4 : Ln(3+) (Ln Eu, Dy, Sm, and Er) phosphors show strong light emissions with different colors coming from different activator ions under ultraviolet light excitation or low-voltage electron beam excitation. Furthermore, this general and facile method may be of much significance in the synthesis of many other lanthanide compounds with polyhedral morphology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The large-scale synthesis of the metal-organic framework Eu(1,3,5-BTC)center dot 6H(2)O nanocrystallites with delicate morphologies such as sheaflike, butterflylike, and flowerlike superstructures composed of nanowires have been realized via a simple solution phase method at room temperature. Time-dependent experiments indicate that these superstructures were constructed by the splitting crystal growth mechanism, as has been noted in some minerals in nature. The synthetic parameters such as reaction time, concentration and molar ratio of reactants, surfactant, and reaction temperature all affected the morphology of the Eu(1,3,5-BTC)center dot 6H(2)O architectures. These well-arranged architectures exhibit red emission corresponding to the D-5(0) -> F-7(2) transition of the Eu3+ ions under UV light excitation, and the lifetime is determined to be about 0.22 ms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The nonstoichimetric Ba0.92Y2.15F8.29 submicrospheres that piled up by nanoparticles have been prepared via a solution-based method in a hydrothermal environment. The size distribution of the submicrospheres could be tuned by varying the amount of BaCl2. The fluoride source NaBF4 plays an important role in the formation of the submicrospheres. The chelator ethylenediaminetetraacetic acid regulates the growth of the primary nanoparticles as well as the aggregated submicrospheres. The photoluminescence properties of different concentrations of Eu3+-doped Ba0.92Y2.15F8.29 were investigated and the results revealed that the 8% concentration of Eu3+ ions is the optimum doping concentration and the Y3+ ions occupy the site of inversion symmetry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A variety of uniform lanthanide orthoborates LnBO(3) (Ln = Gd, Nd, Sm, Eu, Tb, and Dy) microplates have been successfully prepared by a general and facile conversion method. One-dimensional (ID) lanthanide hydroxides were first prepared through a simple hydrothermal process. Subsequently, uniform LnBO(3) microplates were synthesized at the expense of the ID precursors during a hydrothermal conversion process. The whole process in this method was carried out in aqueous condition without the use of any organic solvents, surfactant, or catalyst. The as-obtained rare earth ions doped GdBO3 and TbBO3 microplates show strong light emissions with different colors coming from different activator ions under ultraviolet excitation or low-voltage electron beam excitation, which might find potential applications in fields such as light phosphor powders and advanced flat panel display devices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Uniform MF/YVO4:Ln(3+) (Ln = Eu, Dy, and Sm) composite microspheres have been prepared via a simple and economical wet-chemical route at ambient pressure and low temperature. Monodisperse micrometer-sized melamine formaldehyde (MF) colloidal particles were first fabricated by a condensation process of melamine with formaldehyde. Subsequently, well-dispersed YVO4 nanoparticles were successfully grown onto the MF microspheres to form core-shell structured composite particles in aqueous Solution. The as-obtained composite microspheres with perfect spherical shape are uniform in size and distribution, and the thickness and roughness of the YVO4 shells on MF cores could be tuned by varying the reaction temperature. The MF/YVO4:Ln(3+) composite phosphors show strong light emissions with different colors coming from different activator ions under ultraviolet excitation, which might find potential applications in fields such as light phosphor powders and advanced flat panel displays.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The unique strategy for electrochemiluminescence (ECL) sensor based on the quantum dots (QDs) oxidation in aqueous solution to detect amines is proposed for the first time. Actually, there existed two QDs ECL peaks in anhydrous solution, one at high positive potential and another at high negative potential. However, here we introduced the QDs oxidation ECL in aqueous solution to fabricate a novel ECL sensor. Such sensor needed only lower positive potential to produce ECL, which could prevent the interferences resulted from high potential as that of QDs reduction ECL in aqueous solution. Therefore, the present work not only extended the QDs oxidation ECL application field from anhydrous to aqueous solution but also enriched the variety of ECL system in aqueous solution. Furthermore, we investigated the QDs oxidation ECL toward different kinds of amines, and found that both aliphatic alkyl and hydroxy groups could lead to the enhancement of ECL intensity. Among these amines, 2-(dibutylamino)ethanol (DBAE) is the most effective one, and accordingly, the first ECL sensing application of the QDs oxidation ECL toward DBAE is developed; the as-prepared ECL sensor shows wide linear range, high sensitivity, and good stability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we have explored a simple and new strategy to obtain quasimonodisperse Au/Pt hybrid nanoparticles (NPS) with urchinlike morphology and controlled size and Pt shell thickness. Through changing the molar ratios of Au to Pt, the Pt shell thickness of urchinlike Au/Pt hybrid NPs could be easily controlled; through changing the size of Au NPs (the size was easily controlled from similar to 3 to similar to 70 nm via simple heating of HAuCl4-citrate aqueous solution), the size of urchinlike Au/Pt hybrid NPs could be facilely dominated. It should be noted that heating the solution (100 degrees C) was very necessary for obtaining three-dimensional (3D) urchinlike nanostructures while H2PtCl6 was added to gold NPs aqueous solution in the presence of reductant (ascorbic acid). The electrocatalytic oxygen reduction reaction (ORR, a reaction greatly pursued by scientists in view of its important application in fuel cells) and the electron-transfer reaction between hexacyanoferrate(III) ions and thiosulfate ions of urchinlike Au/Pt hybrid NPs were investigated. It is found that the as-prepared urchinlike Au/Pt hybrid NPs exhibited higher catalytic activities than that of similar to Pt NPs with similar size.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mesoporous YF3 nanoflowers were successfully prepared via solvent extraction route. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observations indicated that these nanoflowers with uneven porous architectures had a spherical shape and were consisted of many YF3 nanosheets with a thickness of about 15 not. Energy-dispersive spectroscopy (EDS) analysis was used to check the chemical composition and purity of the products. YF3 nanoflowers had bimodal mesoporous distribution and Brunauer-Emmett-Teller (BET) surface area of 116 m(2)/g.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

NdF3 and TbF3 nanoparticles were successfully synthesized via a solvent extraction route using Cynex923 (R3P=O). X-ray diffraction (XRD) study showed that pure hexagonal phase NdF3 and pure orthorhombic phase TbF3 could be obtained under the current synthetic conditions. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) observations indicated that as-obtained NdF3 nanoplates have a diameter of 50-80 nm and thickness of 10-20 nm and TbF3 products have sphere morphologies with diameter from 70 to 170 nm. The driving force for the growth of NdF3 nanoplates could be attributed to the hexagonal crystal structure. The luminescence properties of NdF3 and TbF3 nanoparticles were investigated, which indicated that NdF3 nanoparticles showed typical emission at 888,1064, and 1328 nm and TbF3 nanoparticles showed characteristic emission of Tb3+ (f-f).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have developed a simple, efficient, economical, and general approach to construct diverse multifunctional Fe3O4/metal hybrid nanostructures displaying magnetization using 3-aminopropyltrimethoxysilane (APTMS) as a linker. High-density Au nanoparticles (NPs) could be supported on the surface of superparamagnetic Fe3O4 spheres and used as seeds to construct Au shell-coated magnetic spheres displaying near-infrared (NIR) absorption., which may make them promising in biosensor and biomedicine applications. High-density flower-like Au/Pt hybrid NPs could be supported on the surface of Fe3O4 spheres to construct multifunctional hybrid spheres with high catalytic activity towards the electron-transfer reaction between potassium ferricyanide and sodium thiosulfate. High-density Ag or Au/Ag core/shell NPs could also be supported on the surface of Fe3O4 spheres and exhibited pronounced surface-enhanced Raman scattering (SERS), which may possibly be used as an optical probe with magnetic function for application in high-sensitivity bioassays.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we for the first time report a polyol method for large-scale synthesis of rectangular silver nanorods in the presence of directing agent and seeds. This method has some clear advantages including simplicity, high quality, and ease of scaleup. Silver nanowires or silver nanorods with a submicrometer diameter could also be facilely prepared when the reaction parameters are slightly changed. Furthermore, a liquid-liquid assembly strategy has been employed to construct uniform rectangular silver nanorod arrays on a solid substrate which could be used as surface-enhanced Raman scattering (SERS) substrates with high SERS activity, stability, and reproducibility. It is found that the SERS spectra obtained from the probe molecules with the different concentrations show different SERS intensifies. As the concentration of 4-aminothiophenol (4-ATP) or rhodamine 6G (R6G) increases, the SERS intensities progressively increase. The enhancement factor for 4-ATP and R6G should be as large as 5.06 x 10(4) or much larger than the value of 5.06 x 10(8), respectively.