922 resultados para Order of magnitude


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Accumulation rates of Mg, Al, Si, Mn, Fe, Ni, Cu, Zn, opal, and calcium carbonate have been calculated from their concentrations in samples from equatorial Deep Sea Drilling Project sites. Maps of element accumulation rates and of Q-mode factors derived from raw data indicate that the flux of trace metals to equatorial Pacific sediments has varied markedly through time and space in response to changes in the relative and absolute influence of several depositional influences: biogenic, detrital, authigenic, and hydrothermal sedimentation. Biologically derived material dominates the sediment of the equatorial Pacific. The distributions of Cu and Zn are most influenced by surface-water biological activity, but Ni, Al, Fe, and Mn are also incorporated into biological material. All of these elements have equatorial accumulation maxima similar to those of opal and calcium carbonate at times during the past 50 m.y. Detritus distributed by trade winds and equatorial surface circulation contributes Al, non-biogenic Si, Fe, and Mg to the region. Detrital sediment is most important in areas with a small supply of biogenic debris and low bulk-accumulation rates. Al accumulation generally increases toward the north and east, indicating its continental source and distribution by the northeast trade winds. Maxima in biological productivity during middle Eocene and latest Miocene to early Pliocene time and concomitant well-developed surface circulation contributed toward temporal maxima in the accumulation rates of Cu, Zn, Ni, and Al in sediments of those ages. Authigenic material is also important only where bulk-sediment accumulation rates are low. Ni, Cu, Zn, and sometimes Mn are associated with this sediment. Fe is almost entirely of hydrothermal origin. Mn is primarily hydrothermal, but some is probably scavenged from sea water by amorphous iron hydroxide floes along with other elements concentrated in hydrothermal sediments, Ni, Cu, and Zn. During the past 50 m.y. all of these elements accumulated over the East Pacific Rise at rates nearly an order of magnitude higher than those at non-rise-crest sites. In addition, factor analysis indicates that some of this material is carried substantial distances to the west of the rise crest. Accumulation rates of Fe in basal metalliferous sediments indicate that the hydrothermal activity that supplied amorphous Fe oxides to the East Pacific Rise areas was most intense during middle Eocene and late Miocene to early Pliocene time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the austral summer seasons 2001/02 and 2002/03, Global Positioning System (GPS) data were collected in the vicinity of Vostok Station to determine ice flow velocities over Lake Vostok. Ten GPS sites are located within a radius of 30 km around Vostok Station on floating ice as well as on grounded ice to the east and to the west of the lake. Additionally, a local deformation network around the ice core drilling site 5G-1 was installed. The derived ice flow velocity for Vostok Station is 2.00 m/a ± 0.01 m/a. Along the flowline of Vostok Station an extension rate of about 10**-5/a (equivalent to 1 cm/km/a) was determined. This significant velocity gradient results in a new estimate of 28700 years for the transit time of an ice particle along the Vostok flowline from the bedrock ridge in the southwest of the lake to the eastern shoreline. With these lower velocities compared to earlier studies and, hence, larger transit times the basal accretion rate is estimated to be 4 mm/a along a portion of the Vostok flowline. An assessment of the local accretion rate at Vostok Station using the observed geodetic quantities yields an accretion rate in the same order of magnitude. Furthermore, the comparison of our geodetic observations with results inferred from ice-penetrating radar data indicates that the ice flow may not have changed significantly for several thousand years.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hallstätter Glacier is the northernmost glacier of Austria. Appendant to the northern Limestone Alps, the glacier is located at 47°28'50'' N, 13°36'50'' E in the Dachstein-region. At the same time with its advance linked to the Little Ice Age (LIA), research on changes in size and mass of Hallstätter glacier was started in 1842 by Friedrich Simony. He observed and documented the glacier retreat related to its last maximum extension in 1856. In addition, Hallstätter Glacier is a subject to scientific research to date. In this thesis methods and results of ongoing mass balance measurements are presented and compared to long term volume changes and meteorological observations. The current mass balance monitoring programm using the direct glaciological method was started 2006. In this context, 2009 the ice thickness was measured with ground penetrating radar. The result are used with digital elevation models reconstucted from historical maps and recent digital elevation models to calculate changes in shape and volume of Hallstätter Glacier. Based on current meteorological measurements near the glacier and longtime homogenized climate data provided by HISTALP, time series of precipitation and temperature beginning at the LIA are produced. These monthly precipitation and monthly mean temperature data are used to compare results of a simple degree day model with the volume change calculated from the difference of the digital elevation models. The two years of direct mass balance measurements are used to calibrate the degree day model. A number of possible future scenarios are produced to indicate prospective changes. Within the 150-year-period between 1856 and 2007 the Hallstätter Glacier lost 1940 meters of its length and 2.23 km**2 in area. 37% of the initial volume of 1856 remained. This retreat came along with a change in climate. The application of a running avarage of 30 years shows an increase in precipitation of 18.5% and a warming of 1.3°C near the glacier between 1866 and 1993. The mass loss was continued in the hydrological years 2006/2007 and 2007/2008 showing mean specific mass balance of -376 mm and -700 mm, respectively. Applying a temperature correction for the different minimum elevations of the glacier, the degree day approach based on the two measured mass balances can reproduce sign and order of magnitude of the volume change of Hallstätter Glacier since 1856. Nevertheless, the relative deviation is significant. Future scenarios show, that 30% of the entire glacier volume remains after subtracting the elevation changes between the digital elevation models of 2002 and 2007 ten times from the surface of 2007. The past and present mass changes of Hallstätter Glacier are showing a retreating glacier as a consequence of rising temperatures. Due to high precepitation, increased with previous warming, the Hallstätter Glacier can and will exist in lower elevation compared to inner alpine glaciers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two types of intact branched glycerol dialkyl glycerol tetraethers (GDGTs) were detected in peat bog samples from Bullenmoor, Northern Germany. Glucuronosyl and glucosyl branched GDGTs comprise on average ca. 4% of the microbial intact polar lipids in the anoxic, acidic peat layer ca. 20 cm below the surface of the bog, suggesting an important ecological role for the source microorganisms. No corresponding phospholipids were detected. Notably, glycosidic branched GDGTs are 5-10 times less abundant than their intact isoprenoid counterparts derived from Archaea, while branched GDGT core lipids exceed their isoprenoid analogues by about an order of magnitude. These contrasting relationships may reflect lower standing stocks of the biomass of producers of branched GDGTs, combined with higher population growth rates relative to soil Archaea. Search strategies for the microbial producers of these conspicuous orphan lipids should benefit from the discovery of their intact polar precursors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ocean Drilling Program (ODP) Hole 735B was drilled to a depth of 1.5 km in a tectonic window of gabbroic lower oceanic crust created at the Southwest Indian Ridge. The gabbros have a very stable natural remanent magnetization (NRM) of reversed polarity with most unblocking temperatures slightly below the Curie temperature of magnetite. The NRM includes a drilling-induced overprint but its intensity decays strongly towards the interior of the drill core. The demagnetization data yield no or only a very small secondary magnetization component acquired during the present Brunhes chron or an earlier normal chron, suggesting cooling through most of the blocking temperature range during chron C5r and a strong resistance against the acquisition of thermoviscous magnetization. A novel furnace has been designed to measure magnetizations and their time dependences at high temperatures (up to 580 deg C) inside a commercial SQUID magnetometer. Magnetic viscosity experiments have been conducted on the gabbros at temperatures up to 550 deg C to determine the time and temperature stability of remanent magnetization. Viscosities are generally small and increase little with temperature below the main blocking temperature, where the increase becomes almost an order of magnitude. Extrapolations to geological times infer viscous acquisitions that would be 5-25% of a thermoremanence in 100 kyr and at temperatures of 200-500 deg C. At ocean bottom temperature the predicted magnetization of one sample acquired in the present Brunhes chron should be 10% of the NRM. However, this is not recognized during NRM demagnetization and partial thermoremanent magnetization (pTRM) acquisitions at 250 deg C are also much smaller than predicted. It thus appears that the NRMs are generally magnetically harder than magnetizations acquired after heating to 570 deg C in the laboratory. Susceptibility changes during heating are small (<5%) indicating a seemingly stable magneto-mineralogy, but conspicuous minima occur after heating to 520 deg C. Also, quasi paleointensity experiments reveal characteristic patterns in the NRM/pTRM ratios and also large increases in pTRM capacity after heating to 570 deg C. Moreover, anhysteretic remanent magnetization acquisition in the low field range (<=10 mT) is strongly enhanced after heating by factors up to three. The alteration of the magneto-mineralogy is interpreted to result from the annealing of defects in magnetite that originate from tectonically induced strain. The oceanic gabbros of Hole 735B are thus ideal source layer material for marine magnetic anomalies, and secondary thermoviscous acquisition, as a possible cause for anomalous skewness, is essentially absent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Results of the analyses of twenty-three samples from the Middle Miocene to Lower Pliocene strata from DSDP Site 467, offshore California, are presented. The analyses were performed with the aim of determining the origin of the organic matter, the stratigraphic section's hydrocarbon generation potential and extent of organic diagenesis. Organic carbon contents are an order of magnitude greater than those typically found in deep sea sediments, suggesting an anoxic depositional environment and elevated levels of primary productivity. Hydrocarbon generation potentials are above average for most samples. The results of elemental analyses indicate that the kerogens are primarily composed of type II organic matter and are thermally immature. Analysis of the bitumen fractions confirms that the samples are immature. In cores from 541 to 614 meters, the gas chromatograms of the C15+ non-aromatic hydrocarbon fractions are dominated by a single peak which was identified as 17*(H), 18*(H), 21beta(H)-28, 30-bisnorhopane. This interval is the same area in which the highest degrees of anoxia are observed as reflected by the lowest pristane/phytane ratios. This correlation may have some implications with regard to the origin of the bisnorhopane and its possible use as an indicator of anoxic depositional conditions within thermally immature sediments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sediment cores retrieved in the Benguela coastal upwelling system off Namibia show very distinct enrichments of solid phase barium at the sulfate/methane transition (SMT). These barium peaks represent diagenetic barite (BaSO4) fronts which form by the reaction of upwardly diffusing barium with interstitial sulfate. Calculated times needed to produce these barium enrichments indicate a formation time of about 14,000 yr. Barium spikes a few meters below the SMT were observed at one of the investigated sites (GeoB 8455). Although this sulfate-depleted zone is undersaturated with respect to barite, the dominant mineral phase of these buried barium enrichments was identified as barite by scanning electron microscopy (SEM). This is the first study which reports the occurrence/preservation of pronounced barite enrichments in sulfate-depleted sediments buried a few meters below the SMT. At site GeoB 8455 high concentrations of dissolved barium in pore water as well as barium in the solid phase were observed. Modeling the measured barium concentrations at site GeoB 8455 applying the numerical model CoTReM reveals that the dissolution rate of barite directly below the SMT is about one order of magnitude higher than at the barium enrichments deeper in the sediment core. This indicates that the dissolution of barite at these deeper buried fronts must be retarded. Thus, the occurrence of the enrichments in solid phase barium at site GeoB 8455 could be explained by decreased dissolution rates of barite due to the changes in the concentration of barite in the sediment, as well as changes in the saturation state of fluids. Furthermore, the alteration of barite into witherite (BaCO3) via the transient phase barium sulfide could lead to the preservation of a former barite front as BaCO3. The calculations and modeling indicate that a relocation of the barite front to a shallower depth occurred between the last glacial maxium (LGM) and the Pleistocene/Holocene transition. We suggest that an upward shift of the SMT occurred at that time, most likely as a result of an increase in the methanogenesis rates due to the burial of high amounts of organic matter below the SMT.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High Li concentrations, up to a maximum of 1155 µM are observed in the pore fluids of the Peru convergent margin slope sediments. At Ocean Drilling Program Sites 683 and 685 (ca. 9°S), the Li concentration depth gradients are twice as steep as at Site 682 and 688 (ca. 11°S). Within the sediments, the most important Li sources are from aluminosilicate minerals. Biogenic opal-A contains little Li and thus dilutes the Li concentration of the bulk sediments. The sediment compositions and the thermal regimes are similar at 9° and 11°S, suggesting there is an additional, non-sedimentary source for the observed high Li concentrations in the northern pore fluids. At 9°S, the 87Sr/86Sr ratios reach a maximum value of 0.709958. The observed radiogenic 87Sr/86Sr values in the pore fluids support the suggestion that the additional Li may derive from exchange reactions with underlying continental crust. The high concentrations of Li at 11°S may derive from basalt alteration at moderate to high temperatures, as suggested by the non-radiogenic 87Sr/86Sr ratios in these pore fluids, which reach a minimum value of 0.707218. Based on (1) Li concentrations in the pore fluids in slope sediments from Peru and several other margins, and (2) an approximate estimate of fluid flux from continental margins into the ocean, continental margins provide an estimated 1 to 3 * 10**10 moles Li/yr to the ocean. This source of oceanic Li, which has not been considered previously, is of the same order of magnitude as some estimates of hydrothermal and river Li fluxes and may have important consequences for the oceanic Li isotope budget. The sink is unknown for this newly discovered and possibly large Li source, but it may be more pervasive low-temperature alteration of oceanic basement than previously estimated, or burial of mineral phases, such as authigenic clay minerals, or metal oxyhydroxides which may be Li-rich.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We studied the stable isotopic and carbonate stratigraphy of ODP Hole 704A to reconstruct the paleoceanographic evolution of the eastern subantarctic sector of the South Atlantic Ocean. Site 704 is well positioned with respect to latitude (46°52.8'S, 7°25.3'E) and bathymetry (2532 m) to monitor past migrations in the position of Polar Front Zone (PFZ) and changes in deep-water circulation during the late Pliocene-Pleistocene. Several important changes occurred in proxy paleoceanographic indicators across the Gauss/Matuyama boundary at 2.47 Ma: (1) accumulation rates of biogenic sedimentary components increased by an order of magnitude (Froelich et al., this volume); (2) planktonic d1 8O values increased by an average of 0.5 per mil; (3) the amplitude of the benthic d18O signal increased; (4) the accumulation rate of ice-rafted detritus increased several fold (Warnke and Allen, this volume); and (5) carbon isotopic ratios of benthic foraminifers decreased by 0.5 per mil, as did the d13C of the fine-fraction carbonate by 1.5 per mil (Mead et al., 1991, doi:10.2973/odp.proc.sr.114.152.1991), but no change occurred in planktonic foraminiferal d13C values. Most of these changes are consistent with more frequent expansions and contractions of the PFZ over Site 704 after 2.47 Ma, bringing cold, nutrient-rich waters to 47°S that stimulated both carbonate and siliceous productivity. The synchronous increase in d18O values and ice-rafted detritus accumulation in Hole 704A indicates that the 2.4 Ma paleoceanographic event included ice volume growth on both Antarctica and Northern Hemisphere continents. The decrease in benthic d13C values indicates that the ventilation rate of Southern Ocean deep water decreased and the nutrient content increased during glacial events after 2.5 Ma. At the Gauss/Matuyama boundary, benthic d13C values of the Southern Ocean shifted toward those of the Pacific end member, indicating a decrease in the relative mixing ratio of Northern Component Water and Circumpolar Deep Water. During the early Matuyama (~2.3 to 1.7 Ma), the PFZ generally occupied a southerly position with respect to Site 704 and carbonate productivity prevailed. Exceptions to these general conditions occurred during strong glacial events of the early Matuyama (e.g., isotopic stages 82, 78, 74, and 70), when the PFZ migrated to the north and opal sedimentation predominated at Site 704. At 1.7 Ma, the PFZ migrated toward the equator and occupied a more northerly position for a prolonged interval between ~1.7 and 1.5 Ma. Beginning at ~1.5-1.4 Ma, surface and bottom water parameters (d18O, d13C, %CaCO3, and %opal) in the subantarctic South Atlantic became highly correlated such that glacial events (d18O maxima) corresponded to d13C and carbonate minima and opal maxima. This pattern is typical of the correlation found during the latest Pleistocene in the Southern Ocean (Charles and Fairbanks, in press). This event coincided with increased suppression of Northern Component Water during glacial events after 1.5 Ma (Raymo et al., 1990, doi:10.1016/0012-821X(90)90051-X), which may have influenced the climatology of the Southern Hemisphere by altering the flux of heat and salt to the Southern Ocean).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sulfide mineralogy and the contents and isotope compositions of sulfur were analyzed in a complete oceanic volcanic section from IODP Hole 1256D in the eastern Pacific, in order to investigate the role of microbes and their effect on the sulfur budget in altered upper oceanic crust. Basalts in the 800 m thick volcanic section are affected by a pervasive low-temperature background alteration and have mean sulfur contents of 530 ppm, reflecting loss of sulfur relative to fresh glass through degassing during eruption and alteration by seawater. Alteration halos along fractures average 155 ppm sulfur and are more oxidized, have high SO4/Sum S ratios (0.43), and lost sulfur through oxidation by seawater compared to host rocks. Although sulfur was lost locally, sulfur was subsequently gained through fixation of seawater-derived sulfur in secondary pyrite and marcasite in veins and in concentrations at the boundary between alteration halos and host rocks. Negative d34S[sulfide-S] values (down to -30 per mil) and low temperatures of alteration (down to ~40 °C) point to microbial reduction of seawater sulfate as the process resulting in local additions of sulfide-S. Mass balance calculations indicate that 15-20% of the sulfur in the volcanic section is microbially derived, with the bulk altered volcanic section containing 940 ppm S, and with d34S shifted to -6.0 per mil from the mantle value (0 per mil). The bulk volcanic section may have gained or lost sulfur overall. The annual flux of microbial sulfur into oceanic basement based on Hole 1256D is 3-4 * 10**10 mol S/yr, within an order of magnitude of the riverine sulfate source and the sedimentary pyrite sink. Results indicate a flux of bacterially derived sulfur that is fixed in upper ocean basement of 7-8 * 10**-8 mol/cm**-2/yr1 over 15 m.y. This is comparable to that in open ocean sediment sites, but is one to two orders of magnitude less than for ocean margin sediments. The global annual subduction of sulfur in altered oceanic basalt lavas based on Hole 1256D is 1.5-2.0 * 10**11 mol/yr, comparable to the subduction of sulfide in sediments, and could contribute to sediment-like sulfur isotope heterogeneities in the mantle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The relationship between mesoscale hydrodynamics and the distribution of large particulate matter (LPM, particles larger than 200 ?m) in the first 1000 m of the Western Mediterranean basin was studied with a microprocessor-driven CTD-video package, the Underwater Video Profiler (UVP). Observations made during the last decade showed that, in late spring and summer, LPM concentration was high in the coastal part of the Western Mediterranean basin at the shelf break and near the continental slope (computed maximum: 149 ?g C/l between 0 and 100 m near the Spanish coast of the Gibraltar Strait). LPM concentration decreased further offshore into the central Mediterranean Sea where, below 100 m, it remained uniformly low, ranging from 2 to 4 ?g C/l. However, a strong variability was observed in the different mesoscale structures such as the Almeria-Oran jet in the Alboran Sea or the Algerian eddies. LPM concentration was up to one order of magnitude higher in fronts and eddies than in the adjacent oligotrophic Mediterranean waters (i.e. 35 vs. 8 ?g C/l in the Alboran Sea or 16 vs. 3 ?g C/l in a small shear cyclonic eddy). Our observations suggest that LPM spatial heterogeneity generated by the upper layer mesoscale hydrodynamics extends into deeper layers. Consequently, the superficial mesoscale dynamics may significantly contribute to the biogeochemical cycling between the upper and meso-pelagic layers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

At subduction zones, the permeability of major fault zones influences pore pressure generation, controls fluid flow pathways and rates, and affects fault slip behavior and mechanical strength by mediating effective normal stress. Therefore, there is a need for detailed and systematic permeability measurements of natural materials from fault systems, particularly measurements that allow direct comparison between the permeability of sheared and unsheared samples from the same host rock or sediment. We conducted laboratory experiments to compare the permeability of sheared and uniaxially consolidated (unsheared) marine sediments sampled during IODP Expedition 316 and ODP Leg 190 to the Nankai Trough offshore Japan. These samples were retrieved from: (1) The décollement zone and incoming trench fill offshore Shikoku Island (the Muroto transect); (2) Slope sediments sampled offshore SW Honshu (the Kumano transect) ~ 25 km landward of the trench, including material overriden by a major out-of-sequence thrust fault, termed the "megasplay"; and (3) A region of diffuse thrust faulting near the toe of the accretionary prism along the Kumano transect. Our results show that shearing reduces fault-normal permeability by up to 1 order of magnitude, and this reduction is largest for shallow (< 500 mbsf) samples. Shearing-induced permeability reduction is smaller in samples from greater depth, where pre-existing fabric from compaction and lithification may be better developed. Our results indicate that localized shearing in fault zones should result in heterogeneous permeability in the uppermost few kilometers in accretionary prisms, which favors both the trapping of fluids beneath and within major faults, and the channeling of flow parallel to fault structure. These low permeabilities promote the development of elevated pore fluid pressures during accretion and underthrusting, and will also facilitate dynamic hydrologic processes within shear zones including dilatancy hardening and thermal pressurization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A methodology of experimental simulation of state of spent nuclear fuel that occurs on the sea floor due to some catastrophes or dumping is developed. Data on long-term (more than 2000 days) experiments on estimation of 85Kr and 137Cs release rate from spent nuclear fuel (fragments of irradiated UO2 pellets) were firstly obtained; these estimates prove correctness of a hypothesis offered by us in early 1990s concerning to earlier 85Kr release (by one order of magnitude higher than that of 137Cs) as compared to other fission fragments in case of loss of integrity of fuel containment as a result of corrosion on the sea floor. A method and technique of onboard 85Kr and 137Cs sampling and extraction (as well as sampling of tritium, product of triple 235U fission) and their radiometric analysis at coastal laboratories are developed. Priority data on 85Kr background in bottom layers of the Barents and Kara Seas and 137Cs and 3H in these seas (state of 2003) are presented. Models necessary for estimation of dilution of fission products of spent nuclear fuel and their transport on the floor in accident and dumping regions are developed. An experimental method for examination of state of spent nuclear fuel on the sea floor (one expedition each 2-3 years) by 85Kr release into environment (a leak tracer) is proposed; this release is an indicator of destruction of fuel containment and release of products of spent nuclear fuel in case of 235UO2 corrosion in sea water.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The distribution of pollen in marine sediments is used to record vegetation changes over the past 30,000 years on the adjacent continent. A transect of marine pollen sequences from the mouth of the river Congo (~5°S) to Walvis Bay and Lüderitz (~25°S) shows vegetation changes in Congo, Angola and Namibia from the last glacial period into the Holocene. The comparison of pollen records from different latitudes provides information about the latitudinal shift of open forest and savannahs (Poaceae pollen), the extension of lowland forest (rain forest pollen) and Afromontane forest (Podocarpus pollen), and the position of the desert fringe (pollen of Caryophyllaceae, Chenopodiaceae and Amaranthaceae). High Cyperaceae pollen percentages in sediments from the last glacial period off the mouth of the river Congo suggest the presence of open swamps rather than savannah vegetation in the Congo Basin. Pollen from Restionaceae in combination with Stoebe-type pollen (probably from Elytropappus) indicates a possible northwards extension of winter rain vegetation during the last glacial period. The record of Rhizophora (mangrove) pollen is linked to erosion of the continental shelf and sea-level rise. Pollen influx is highest off river mouths (10-2000 grains year**-1 cm**-2), close to the coast (300-6000 grains year**-1 cm**-2), but is an order of magnitude lower at sites situated far from the continent (<10 grains year**-1 cm**-2).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metabolic processes have the potential to modulate the effects of ocean acidification (OA) in nearshore macroalgal beds. We investigated whether natural mixed assemblages of the articulate coralline macroalgae Arthrocardia corymbosa and understory crustose coralline algae (CCA) altered pH and O2 concentrations within and immediately above their canopies. In a unidirectional flume, we tested the effect of water velocity (0-0.1 m/s), bulk seawater pH (ambient pH 8.05, and pH 7.65), and irradiance (photosynthetically saturating light and darkness) on pH and O2 concentration gradients, and the derived concentration boundary layer (CBL) thickness. At bulk seawater pH 7.65 and slow velocities (0 and 0.015 m/s), pH at the CCA surface increased to 7.90-8.00 in the light. Although these manipulations were short term, this indicates a potential daytime buffering capacity that could alleviate the effects of OA. Photosynthetic activity also increased O2 concentrations at the surface of the CCA. However, this moderating capacity was flow dependent; the CBL thickness decreased from an average of 26.8 mm from the CCA surface at 0.015 m/s to 4.1 mm at 0.04 m/s. The reverse trends occurred in the dark, with respiration causing pH and O2 concentrations to decrease at the CCA surface. At all flow velocities the CBL thicknesses (up to 68 mm) were much greater than those previously published, indicating that the presence of canopies can alter the CBL substantially. In situ, the height of macroalgal canopies can be an order of magnitude larger than those used here, indicating that the degree of buffering to OA will be context dependent.