1000 resultados para Orange Order
Resumo:
Part I
Numerical solutions to the S-limit equations for the helium ground state and excited triplet state and the hydride ion ground state are obtained with the second and fourth difference approximations. The results for the ground states are superior to previously reported values. The coupled equations resulting from the partial wave expansion of the exact helium atom wavefunction were solved giving accurate S-, P-, D-, F-, and G-limits. The G-limit is -2.90351 a.u. compared to the exact value of the energy of -2.90372 a.u.
Part II
The pair functions which determine the exact first-order wavefunction for the ground state of the three-electron atom are found with the matrix finite difference method. The second- and third-order energies for the (1s1s)1S, (1s2s)3S, and (1s2s)1S states of the two-electron atom are presented along with contour and perspective plots of the pair functions. The total energy for the three-electron atom with a nuclear charge Z is found to be E(Z) = -1.125•Z2 +1.022805•Z-0.408138-0.025515•(1/Z)+O(1/Z2)a.u.
Resumo:
The Fokker-Planck (FP) equation is used to develop a general method for finding the spectral density for a class of randomly excited first order systems. This class consists of systems satisfying stochastic differential equations of form ẋ + f(x) = m/Ʃ/j = 1 hj(x)nj(t) where f and the hj are piecewise linear functions (not necessarily continuous), and the nj are stationary Gaussian white noise. For such systems, it is shown how the Laplace-transformed FP equation can be solved for the transformed transition probability density. By manipulation of the FP equation and its adjoint, a formula is derived for the transformed autocorrelation function in terms of the transformed transition density. From this, the spectral density is readily obtained. The method generalizes that of Caughey and Dienes, J. Appl. Phys., 32.11.
This method is applied to 4 subclasses: (1) m = 1, h1 = const. (forcing function excitation); (2) m = 1, h1 = f (parametric excitation); (3) m = 2, h1 = const., h2 = f, n1 and n2 correlated; (4) the same, uncorrelated. Many special cases, especially in subclass (1), are worked through to obtain explicit formulas for the spectral density, most of which have not been obtained before. Some results are graphed.
Dealing with parametrically excited first order systems leads to two complications. There is some controversy concerning the form of the FP equation involved (see Gray and Caughey, J. Math. Phys., 44.3); and the conditions which apply at irregular points, where the second order coefficient of the FP equation vanishes, are not obvious but require use of the mathematical theory of diffusion processes developed by Feller and others. These points are discussed in the first chapter, relevant results from various sources being summarized and applied. Also discussed is the steady-state density (the limit of the transition density as t → ∞).
Resumo:
Let {Ƶn}∞n = -∞ be a stochastic process with state space S1 = {0, 1, …, D – 1}. Such a process is called a chain of infinite order. The transitions of the chain are described by the functions
Qi(i(0)) = Ƥ(Ƶn = i | Ƶn - 1 = i (0)1, Ƶn - 2 = i (0)2, …) (i ɛ S1), where i(0) = (i(0)1, i(0)2, …) ranges over infinite sequences from S1. If i(n) = (i(n)1, i(n)2, …) for n = 1, 2,…, then i(n) → i(0) means that for each k, i(n)k = i(0)k for all n sufficiently large.
Given functions Qi(i(0)) such that
(i) 0 ≤ Qi(i(0) ≤ ξ ˂ 1
(ii)D – 1/Ʃ/i = 0 Qi(i(0)) Ξ 1
(iii) Qi(i(n)) → Qi(i(0)) whenever i(n) → i(0),
we prove the existence of a stationary chain of infinite order {Ƶn} whose transitions are given by
Ƥ (Ƶn = i | Ƶn - 1, Ƶn - 2, …) = Qi(Ƶn - 1, Ƶn - 2, …)
With probability 1. The method also yields stationary chains {Ƶn} for which (iii) does not hold but whose transition probabilities are, in a sense, “locally Markovian.” These and similar results extend a paper by T.E. Harris [Pac. J. Math., 5 (1955), 707-724].
Included is a new proof of the existence and uniqueness of a stationary absolute distribution for an Nth order Markov chain in which all transitions are possible. This proof allows us to achieve our main results without the use of limit theorem techniques.
Resumo:
Desarrollo de una aplicación móvil y otra web (sólo la parte cliente, y puntualmente algún pequeño desarrollo de la parte servidor). La aplicación consiste en la venta de comida por parte de restaurantes de México
Resumo:
Proper encoding of transmitted information can improve the performance of a communication system. To recover the information at the receiver it is necessary to decode the received signal. For many codes the complexity and slowness of the decoder is so severe that the code is not feasible for practical use. This thesis considers the decoding problem for one such class of codes, the comma-free codes related to the first-order Reed-Muller codes.
A factorization of the code matrix is found which leads to a simple, fast, minimum memory, decoder. The decoder is modular and only n modules are needed to decode a code of length 2n. The relevant factorization is extended to any code defined by a sequence of Kronecker products.
The problem of monitoring the correct synchronization position is also considered. A general answer seems to depend upon more detailed knowledge of the structure of comma-free codes. However, a technique is presented which gives useful results in many specific cases.
Resumo:
Spatiotemporal instabilities in nonlinear Kerr media with arbitrary higher-order dispersions are studied by use of standard linear-stability analysis. A generic expression for instability growth rate that unifies and expands on previous results for temporal, spatial, and spatiotemporal instabilities is obtained. It is shown that all odd-order dispersions contribute nothing to instability, whereas all even-order dispersions not only affect the conventional instability regions but may also lead to the appearance of new instability regions. The role of fourth-order dispersion in spatiotemporal instabilities is studied exemplificatively to demonstrate the generic results. Numerical simulations confirm the obtained analytic results. (C) 2002 Optical Society of America.
Resumo:
A simple method to suppress the zero-order diffraction in the reconstructed image of digital holography is presented. In this method, the Laplacian of a detected hologram is used instead of the hologram itself for numerical reconstruction by computing the discrete Fresnel integral. This method can significantly improve the image quality and give better resolution and higher accuracy of the reconstructed image. The main advantages of this method are its simplicity in experimental requirements and convenience in data processing. (C) 2002 Society of Photo-optical Instrumentation Engineers.
Resumo:
A set of recursive formulas for diffractive optical plates design is described. The pure-phase plates simulated by this method homogeneously concentrate more than 96% of the incident laser energy in the desired focal-plane region. The intensity focal-plane profile fits a lath-order super-Gaussian function and has a nearly perfect flat top. Its fit to the required profile measured in the mean square error is 3.576 x 10(-3). (C) 1996 Optical Society of America
Resumo:
The real and imaginary parts of third-order susceptibility of amorphous GeSe2 film were measured by the method of the femtosecond optical heterodyne detection of optical Kerr effect at 805 nm with the 80 fs ultra fast pulses. The results indicated that the values of real and imaginary parts were 8.8 x 10(-12) esu and -3.0 x 10(-12) esu, respectively. An amorphous GeSe2 film also showed a very fast response within 200 fs. The ultra fast response and large third-order non-linearity are attributed to the ultra fast distortion of the electron orbits surrounding the average positions of the nucleus of Ge and Se atoms. (c) 2005 Elsevier B.V. All rights reserved.