986 resultados para Optical fibre communications
Resumo:
The influence of optical activity on two-wave mixing (TWM) in photorefractive BTO and BSO crystals in the absence of an applied field is studied both theoretically and experimentally. For the conventinal orientations of the grating vector, K [001] and K[001], the piezoelectric and photoelastic effects are either zero or negligible. This makes an analytical treatment of the TWM problem possible. We obtain an analytical solution for the coupled wave equations of TWM valid for arbitrary optical activity. This result is of special importance for BTO crystals. In these crystals under the condition of maximum energy transfer (|K|rD=1, where rD is the Debye radius) neither the approximation of small optical activity nor the one of dominating optical activity is applicable and our analytical solution becomes essential. Our experimental setup uses beams with a trapezoidal overlap that allows us to study the thickness-dependence of the gain in a single measurement. Experimental and theoretical results for a BTO crystal are compared with those for a BSO crystal and are explained in the framework of the model used.
Resumo:
A pulsed Brillouin fibre ring laser has been developed and we describe its main features. The pump and the Brillouin laser are shown to form an excellent dual frequency source for distributed sensing. A first application for fire detection is demonstrated.
Resumo:
We describe a demultiplexing scheme for fibre optic Bragg grating sensors in which signal recovery is achieved by locking each sensor grating to a corresponding receiver grating. As a demonstration, the technique is applied to strain and temperature sensing, achieving a resolution of 3.0 µe and 0.2°C, respectively.
Resumo:
We consider non-degenerate two-wave mixing in photorefractive Bi12SiO20. It is shown theoretically that the presence of absorption and optical activity in the photorefractive media may result in a number of maxima for the gain as the frequency detuning between the two beams is varied. Further, when the beam interaction is used for optical amplification, there may also exist an optimum crystal length beyond which there is a reduction in the useful gain obtainable. Experimental results are presented in confirmation of the theory.
Resumo:
We describe a technique applicable to interferometric systems illuminated by a laser diode, whereby the optical path difference is recovered by means of sinusoidal modulation of the laser emission frequency.
Resumo:
We report an in-fiber polarizer implemented using a 45° tilted FBG. Polarization extinction ratio of 28dB at 1550nm and HMFW over 80nm has been demonstrated. When the un-polarized light passes this device, 99.5% of degree of polarization can be achieved.
Resumo:
Single polarisation operation of fibre ring laser has been realised by employing an intracavity 45deg-tilted fibre Bragg grating (45deg-TFBG). The degree of polarisation up to 99.94% of the laser was demonstrated with good stability.
Resumo:
Single polarisation operation of fibre ring laser has been realised by employing an intracavity 45°tilted fibre Bragg gratings (45° TFBGs). The degree of polarisation of 99.94% of the laser was demonstrated with good stability.
Resumo:
We present the first experimental implementation of a recently designed quasi-lossless fiber span with strongly reduced signal power excursion. The resulting fiber waveguide medium can be advantageously used both in lightwave communications and in all-optical nonlinear data processing.
Resumo:
We present the first experimental implementation of a recently designed quasi-lossless fibre span with strongly reduced signal power excursion. The resulting fibre waveguide medium can be advantageously used both in lightwave communications and in all-optical nonlinear data processing.
Resumo:
Widespread use of glass fibre reinforced cement (GRC) has been impeded by concerns over its durability. Three degradation mechanisms are proposed - fibre corrosion, Ca(OHh precipitation and matrix densification - although their relative importance is debated. Matrices with reduced alkalinities and Ca(OH)2 contents are being developed; the aim of this study was to investigate their hydration and interaction with alkali-resistant fibres to determine the factors controlling their long-term durability, and assess the relevancy of accelerated ageing. The matrices studied were: OPC/calcium-sulphoaluminate cement plus metakaolin (C); OPC plus metakaolin (M); blast-furnace slag cement plus a micro-silica based additive (D); and OPC (O). Accelerated ageing included hot water and cyclic regimes prior to tensile testing. Investigations included pore solution expression, XRD, DTA/TG, SEM and optical petrography. Bond strength was determined from crack spacings using microstructural parameters obtained from a unique image analysis technique. It was found that, for the new matrices - pore solution alkalinities were lower; Ca(OH)2 was absent or quickly consumed; different hydrates were formed at higher immersion temperatures; degradation under 65°C immersion was an order of magnitude slower, and no interfilamental Ca(OH)2 was observed .It was concluded that: fibre weakening caused by flaw growth was the primary degradation mechanism and was successfully modelled on stress corrosion/static fatigue principles. OPC inferiority was attributed partly to its higher alkalinity but chiefly to the growth of Ca(OH)2 aggravating the degradation; and hot water ageing although useful in model formulation and contrasting the matrices, changed the intrinsic nature of the composites rather than simply accelerating the degradation mechanisms.
Resumo:
We implement an optical biosensor using long-period fibre grating immobilised with probe DNA. It has been used to detect hybridisation of target DNA, showing a high sensitivity and reusability function.
Resumo:
We report a novel in-fibre twist sensor utilising strong polarisation dependent coupling behaviour of fiber Bragg grating with 81° tilted structure. The demonstrated twist sensor has shown high torsion sensitivity and capability of direction recognition.
Resumo:
The current optical communications network consists of point-to-point optical transmission paths interconnected with relatively low-speed electronic switching and routing devices. As the demand for capacity increases, then higher speed electronic devices will become necessary. It is however hard to realise electronic chip-sets above 10 Gbit/s, and therefore to increase the achievable performance of the network, electro-optic and all-optic switching and routing architectures are being investigated. This thesis aims to provide a detailed experimental analysis of high-speed optical processing within an optical time division multiplexed (OTDM) network node. This includes the functions of demultiplexing, 'drop and insert' multiplexing, data regeneration, and clock recovery. It examines the possibilities of combining these tasks using a single device. Two optical switching technologies are explored. The first is an all-optical device known as 'semiconductor optical amplifier-based nonlinear optical loop mirror' (SOA-NOLM). Switching is achieved by using an intense 'control' pulse to induce a phase shift in a low-intensity signal propagating through an interferometer. Simultaneous demultiplexing, data regeneration and clock recovery are demonstrated for the first time using a single SOA-NOLM. The second device is an electroabsorption (EA) modulator, which until this thesis had been used in a uni-directional configuration to achieve picosecond pulse generation, data encoding, demultiplexing, and 'drop and insert' multiplexing. This thesis presents results on the use of an EA modulator in a novel bi-directional configuration. Two independent channels are demultiplexed from a high-speed OTDM data stream using a single device. Simultaneous demultiplexing with stable, ultra-low jitter clock recovery is demonstrated, and then used in a self-contained 40 Gbit/s 'drop and insert' node. Finally, a 10 GHz source is analysed that exploits the EA modulator bi-directionality to increase the pulse extinction ratio to a level where it could be used in an 80 Gbit/s OTDM network.