866 resultados para OPTIMIZATION MODEL


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electrothermomechanical MEMS are essentially microactuators that operate based on the thermoelastic effect induced by the Joule heating of the structure. They can be easily fabricated and require relatively low excitation voltages. However, the actuation time of an electrothermomechanical microdevice is higher than the actuation times related to electrostatic and piezoelectric actuation principles. Thus, in this research, we propose an optimization framework based on the topology optimization method applied to transient problems, to design electrothermomechanical microactuators for response time reduction. The objective is to maximize the integral of the output displacement of the actuator, which is a function of time. The finite element equations that govern the time response of the actuators are provided. Furthermore, the Solid Isotropic Material with Penalization model and Sequential Linear Programming are employed. Finally, a smoothing filter is implemented to control the solution. Results aiming at two distinct applications suggest the proposed approach can provide more than 50% faster actuators. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We recently showed that oxadiazoles have anti-Trypanosoma cruzi activity at micromolar concentrations. These compounds are easy to synthesize and show a number of clear and interpretable structure-activity relationships (SAR), features that make them attractive to pursue potency enhancement. We present here the structural design, synthesis, and anti-T. cruzi evaluation of new oxadiazoles denoted 5a-h and 6a-h. The design of these compounds was based on a previous model of computational docking of oxadiazoles on the T. cruzi protease cruzain. We tested the ability of these compounds to inhibit catalytic activity of cruzain, but we found no correlation between the enzyme inhibition and the antiparasitic activity of the compounds. However, we found reliable SAR data when we tested these compounds against the whole parasite. While none of these oxadiazoles showed toxicity for mammalian cells, oxadiazoles 6c (fluorine), 6d (chlorine), and 6e (bromine) reduced epimastigote proliferation and were cidal for trypomastigotes of T. cruzi Y strain. Oxadiazoles 6c and 6d have IC50 of 9.5 +/- 2.8 and 3.5 +/- 1.8 mu M for trypomastigotes, while Benznidazole, which is the currently used drug for Chagas disease treatment, showed an IC50 of 11.3 +/- 2.8 mu M. Compounds 6c and 6d impair trypomastigote development and invasion in macrophages, and also induce ultrastructural alterations in trypomastigotes. Finally, compound 6d given orally at 50 mg/kg substantially reduces the parasitemia in T. cruzi-infected BALB/c mice. Our drug design resulted in potency enhancement of oxadiazoles as anti-Chagas disease agents, and culminated with the identification of oxadiazole 6d, a trypanosomicidal compound in an animal model of infection. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In deterministic optimization, the uncertainties of the structural system (i.e. dimension, model, material, loads, etc) are not explicitly taken into account. Hence, resulting optimal solutions may lead to reduced reliability levels. The objective of reliability based design optimization (RBDO) is to optimize structures guaranteeing that a minimum level of reliability, chosen a priori by the designer, is maintained. Since reliability analysis using the First Order Reliability Method (FORM) is an optimization procedure itself, RBDO (in its classical version) is a double-loop strategy: the reliability analysis (inner loop) and the structural optimization (outer loop). The coupling of these two loops leads to very high computational costs. To reduce the computational burden of RBDO based on FORM, several authors propose decoupling the structural optimization and the reliability analysis. These procedures may be divided in two groups: (i) serial single loop methods and (ii) unilevel methods. The basic idea of serial single loop methods is to decouple the two loops and solve them sequentially, until some convergence criterion is achieved. On the other hand, uni-level methods employ different strategies to obtain a single loop of optimization to solve the RBDO problem. This paper presents a review of such RBDO strategies. A comparison of the performance (computational cost) of the main strategies is presented for several variants of two benchmark problems from the literature and for a structure modeled using the finite element method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work addresses the treatment of lower density regions of structures undergoing large deformations during the design process by the topology optimization method (TOM) based on the finite element method. During the design process the nonlinear elastic behavior of the structure is based on exact kinematics. The material model applied in the TOM is based on the solid isotropic microstructure with penalization approach. No void elements are deleted and all internal forces of the nodes surrounding the void elements are considered during the nonlinear equilibrium solution. The distribution of design variables is solved through the method of moving asymptotes, in which the sensitivity of the objective function is obtained directly. In addition, a continuation function and a nonlinear projection function are invoked to obtain a checkerboard free and mesh independent design. 2D examples with both plane strain and plane stress conditions hypothesis are presented and compared. The problem of instability is overcome by adopting a polyconvex constitutive model in conjunction with a suggested relaxation function to stabilize the excessive distorted elements. The exact tangent stiffness matrix is used. The optimal topology results are compared to the results obtained by using the classical Saint Venant–Kirchhoff constitutive law, and strong differences are found.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Small scale fluid flow systems have been studied for various applications, such as chemical reagent dosages and cooling devices of compact electronic components. This work proposes to present the complete cycle development of an optimized heat sink designed by using Topology Optimization Method (TOM) for best performance, including minimization of pressure drop in fluid flow and maximization of heat dissipation effects, aiming small scale applications. The TOM is applied to a domain, to obtain an optimized channel topology, according to a given multi-objective function that combines pressure drop minimization and heat transfer maximization. Stokes flow hypothesis is adopted. Moreover, both conduction and forced convection effects are included in the steady-state heat transfer model. The topology optimization procedure combines the Finite Element Method (to carry out the physical analysis) with Sequential Linear Programming (as the optimization algorithm). Two-dimensional topology optimization results of channel layouts obtained for a heat sink design are presented as example to illustrate the design methodology. 3D computational simulations and prototype manufacturing have been carried out to validate the proposed design methodology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The need for a convergence between semi-structured data management and Information Retrieval techniques is manifest to the scientific community. In order to fulfil this growing request, W3C has recently proposed XQuery Full Text, an IR-oriented extension of XQuery. However, the issue of query optimization requires the study of important properties like query equivalence and containment; to this aim, a formal representation of document and queries is needed. The goal of this thesis is to establish such formal background. We define a data model for XML documents and propose an algebra able to represent most of XQuery Full-Text expressions. We show how an XQuery Full-Text expression can be translated into an algebraic expression and how an algebraic expression can be optimized.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In a large number of problems the high dimensionality of the search space, the vast number of variables and the economical constrains limit the ability of classical techniques to reach the optimum of a function, known or unknown. In this thesis we investigate the possibility to combine approaches from advanced statistics and optimization algorithms in such a way to better explore the combinatorial search space and to increase the performance of the approaches. To this purpose we propose two methods: (i) Model Based Ant Colony Design and (ii) Naïve Bayes Ant Colony Optimization. We test the performance of the two proposed solutions on a simulation study and we apply the novel techniques on an appplication in the field of Enzyme Engineering and Design.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work presents hybrid Constraint Programming (CP) and metaheuristic methods for the solution of Large Scale Optimization Problems; it aims at integrating concepts and mechanisms from the metaheuristic methods to a CP-based tree search environment in order to exploit the advantages of both approaches. The modeling and solution of large scale combinatorial optimization problem is a topic which has arisen the interest of many researcherers in the Operations Research field; combinatorial optimization problems are widely spread in everyday life and the need of solving difficult problems is more and more urgent. Metaheuristic techniques have been developed in the last decades to effectively handle the approximate solution of combinatorial optimization problems; we will examine metaheuristics in detail, focusing on the common aspects of different techniques. Each metaheuristic approach possesses its own peculiarities in designing and guiding the solution process; our work aims at recognizing components which can be extracted from metaheuristic methods and re-used in different contexts. In particular we focus on the possibility of porting metaheuristic elements to constraint programming based environments, as constraint programming is able to deal with feasibility issues of optimization problems in a very effective manner. Moreover, CP offers a general paradigm which allows to easily model any type of problem and solve it with a problem-independent framework, differently from local search and metaheuristic methods which are highly problem specific. In this work we describe the implementation of the Local Branching framework, originally developed for Mixed Integer Programming, in a CP-based environment. Constraint programming specific features are used to ease the search process, still mantaining an absolute generality of the approach. We also propose a search strategy called Sliced Neighborhood Search, SNS, that iteratively explores slices of large neighborhoods of an incumbent solution by performing CP-based tree search and encloses concepts from metaheuristic techniques. SNS can be used as a stand alone search strategy, but it can alternatively be embedded in existing strategies as intensification and diversification mechanism. In particular we show its integration within the CP-based local branching. We provide an extensive experimental evaluation of the proposed approaches on instances of the Asymmetric Traveling Salesman Problem and of the Asymmetric Traveling Salesman Problem with Time Windows. The proposed approaches achieve good results on practical size problem, thus demonstrating the benefit of integrating metaheuristic concepts in CP-based frameworks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Photovoltaic (PV) solar panels generally produce electricity in the 6% to 16% efficiency range, the rest being dissipated in thermal losses. To recover this amount, hybrid photovoltaic thermal systems (PVT) have been devised. These are devices that simultaneously convert solar energy into electricity and heat. It is thus interesting to study the PVT system globally from different point of views in order to evaluate advantages and disadvantages of this technology and its possible uses. In particular in Chapter II, the development of the PVT absorber numerical optimization by a genetic algorithm has been carried out analyzing different internal channel profiles in order to find a right compromise between performance and technical and economical feasibility. Therefore in Chapter III ,thanks to a mobile structure built into the university lab, it has been compared experimentally electrical and thermal output power from PVT panels with separated photovoltaic and solar thermal productions. Collecting a lot of experimental data based on different seasonal conditions (ambient temperature,irradiation, wind...),the aim of this mobile structure has been to evaluate average both thermal and electrical increasing and decreasing efficiency values obtained respect to separate productions through the year. In Chapter IV , new PVT and solar thermal equation based models in steady state conditions have been developed by software Dymola that uses Modelica language. This permits ,in a simplified way respect to previous system modelling softwares, to model and evaluate different concepts about PVT panel regarding its structure before prototyping and measuring it. Chapter V concerns instead the definition of PVT boundary conditions into a HVAC system . This was made trough year simulations by software Polysun in order to finally assess the best solar assisted integrated structure thanks to F_save(solar saving energy)factor. Finally, Chapter VI presents the conclusion and the perspectives of this PhD work.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

RAF is a bio-energetic descriptive model integrates with MAD model to support Integrated Farm Management. RAF model aimed to enhancing economical, social and environmental sustainability of farm production in terms of energy via convert energy crops and animal manure to biogas and digestate (bio-fertilizers) by anaerobic digestion technologies, growing and breeding practices. The user defines farm structure in terms of present crops, livestock and market prices and RAF model investigates the possibilities of establish on-farm biogas system (different anaerobic digestion technologies proposed for different scales of farms in terms of energy requirements) according to budget and sustainability constraints to reduce the dependence on fossil fuels. The objective function of RAF (Z) is optimizing the total net income of farm (maximizing income and minimizing costs) for whole period which is considered by the analysis. The main results of this study refers to the possibility of enhancing the exploitation of the available Italian potentials of biogas production from on-farm production of energy crops and livestock manure feedstock by using the developed mathematical model RAF integrates with MAD to presents reliable reconcile between farm size, farm structure and on-farm biogas systems technologies applied to support selection, applying and operating of appropriate biogas technology at any farm under Italian conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

MultiProcessor Systems-on-Chip (MPSoC) are the core of nowadays and next generation computing platforms. Their relevance in the global market continuously increase, occupying an important role both in everydaylife products (e.g. smartphones, tablets, laptops, cars) and in strategical market sectors as aviation, defense, robotics, medicine. Despite of the incredible performance improvements in the recent years processors manufacturers have had to deal with issues, commonly called “Walls”, that have hindered the processors development. After the famous “Power Wall”, that limited the maximum frequency of a single core and marked the birth of the modern multiprocessors system-on-chip, the “Thermal Wall” and the “Utilization Wall” are the actual key limiter for performance improvements. The former concerns the damaging effects of the high temperature on the chip caused by the large power densities dissipation, whereas the second refers to the impossibility of fully exploiting the computing power of the processor due to the limitations on power and temperature budgets. In this thesis we faced these challenges by developing efficient and reliable solutions able to maximize performance while limiting the maximum temperature below a fixed critical threshold and saving energy. This has been possible by exploiting the Model Predictive Controller (MPC) paradigm that solves an optimization problem subject to constraints in order to find the optimal control decisions for the future interval. A fully-distributedMPC-based thermal controller with a far lower complexity respect to a centralized one has been developed. The control feasibility and interesting properties for the simplification of the control design has been proved by studying a partial differential equation thermal model. Finally, the controller has been efficiently included in more complex control schemes able to minimize energy consumption and deal with mixed-criticalities tasks

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study is focused on radio-frequency inductively coupled thermal plasma (ICP) synthesis of nanoparticles, combining experimental and modelling approaches towards process optimization and industrial scale-up, in the framework of the FP7-NMP SIMBA European project (Scaling-up of ICP technology for continuous production of Metallic nanopowders for Battery Applications). First the state of the art of nanoparticle production through conventional and plasma routes is summarized, then results for the characterization of the plasma source and on the investigation of the nanoparticle synthesis phenomenon, aiming at highlighting fundamental process parameters while adopting a design oriented modelling approach, are presented. In particular, an energy balance of the torch and of the reaction chamber, employing a calorimetric method, is presented, while results for three- and two-dimensional modelling of an ICP system are compared with calorimetric and enthalpy probe measurements to validate the temperature field predicted by the model and used to characterize the ICP system under powder-free conditions. Moreover, results from the modeling of critical phases of ICP synthesis process, such as precursor evaporation, vapour conversion in nanoparticles and nanoparticle growth, are presented, with the aim of providing useful insights both for the design and optimization of the process and on the underlying physical phenomena. Indeed, precursor evaporation, one of the phases holding the highest impact on industrial feasibility of the process, is discussed; by employing models to describe particle trajectories and thermal histories, adapted from the ones originally developed for other plasma technologies or applications, such as DC non-transferred arc torches and powder spherodization, the evaporation of micro-sized Si solid precursor in a laboratory scale ICP system is investigated. Finally, a discussion on the role of thermo-fluid dynamic fields on nano-particle formation is presented, as well as a study on the effect of the reaction chamber geometry on produced nanoparticle characteristics and process yield.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of the present thesis was to investigate the influence of lower-limb joint models on musculoskeletal model predictions during gait. We started our analysis by using a baseline model, i.e., the state-of-the-art lower-limb model (spherical joint at the hip and hinge joints at the knee and ankle) created from MRI of a healthy subject in the Medical Technology Laboratory of the Rizzoli Orthopaedic Institute. We varied the models of knee and ankle joints, including: knee- and ankle joints with mean instantaneous axis of rotation, universal joint at the ankle, scaled-generic-derived planar knee, subject-specific planar knee model, subject-specific planar ankle model, spherical knee, spherical ankle. The joint model combinations corresponding to 10 musculoskeletal models were implemented into a typical inverse dynamics problem, including inverse kinematics, inverse dynamics, static optimization and joint reaction analysis algorithms solved using the OpenSim software to calculate joint angles, joint moments, muscle forces and activations, joint reaction forces during 5 walking trials. The predicted muscle activations were qualitatively compared to experimental EMG, to evaluate the accuracy of model predictions. Planar joint at the knee, universal joint at the ankle and spherical joints at the knee and at the ankle produced appreciable variations in model predictions during gait trials. The planar knee joint model reduced the discrepancy between the predicted activation of the Rectus Femoris and the EMG (with respect to the baseline model), and the reduced peak knee reaction force was considered more accurate. The use of the universal joint, with the introduction of the subtalar joint, worsened the muscle activation agreement with the EMG, and increased ankle and knee reaction forces were predicted. The spherical joints, in particular at the knee, worsened the muscle activation agreement with the EMG. A substantial increase of joint reaction forces at all joints was predicted despite of the good agreement in joint kinematics with those of the baseline model. The introduction of the universal joint had a negative effect on the model predictions. The cause of this discrepancy is likely to be found in the definition of the subtalar joint and thus, in the particular subject’s anthropometry, used to create the model and define the joint pose. We concluded that the implementation of complex joint models do not have marked effects on the joint reaction forces during gait. Computed results were similar in magnitude and in pattern to those reported in literature. Nonetheless, the introduction of planar joint model at the knee had positive effect upon the predictions, while the use of spherical joint at the knee and/or at the ankle is absolutely unadvisable, because it predicted unrealistic joint reaction forces.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Traditionally, the study of internal combustion engines operation has focused on the steady-state performance. However, the daily driving schedule of automotive engines is inherently related to unsteady conditions. There are various operating conditions experienced by (diesel) engines that can be classified as transient. Besides the variation of the engine operating point, in terms of engine speed and torque, also the warm up phase can be considered as a transient condition. Chapter 2 has to do with this thermal transient condition; more precisely the main issue is the performance of a Selective Catalytic Reduction (SCR) system during cold start and warm up phases of the engine. The proposal of the underlying work is to investigate and identify optimal exhaust line heating strategies, to provide a fast activation of the catalytic reactions on SCR. Chapters 3 and 4 focus the attention on the dynamic behavior of the engine, when considering typical driving conditions. The common approach to dynamic optimization involves the solution of a single optimal-control problem. However, this approach requires the availability of models that are valid throughout the whole engine operating range and actuator ranges. In addition, the result of the optimization is meaningful only if the model is very accurate. Chapter 3 proposes a methodology to circumvent those demanding requirements: an iteration between transient measurements to refine a purpose-built model and a dynamic optimization which is constrained to the model validity region. Moreover all numerical methods required to implement this procedure are presented. Chapter 4 proposes an approach to derive a transient feedforward control system in an automated way. It relies on optimal control theory to solve a dynamic optimization problem for fast transients. From the optimal solutions, the relevant information is extracted and stored in maps spanned by the engine speed and the torque gradient.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In a world focused on the need to produce energy for a growing population, while reducing atmospheric emissions of carbon dioxide, organic Rankine cycles represent a solution to fulfil this goal. This study focuses on the design and optimization of axial-flow turbines for organic Rankine cycles. From the turbine designer point of view, most of this fluids exhibit some peculiar characteristics, such as small enthalpy drop, low speed of sound, large expansion ratio. A computational model for the prediction of axial-flow turbine performance is developed and validated against experimental data. The model allows to calculate turbine performance within a range of accuracy of ±3%. The design procedure is coupled with an optimization process, performed using a genetic algorithm where the turbine total-to-static efficiency represents the objective function. The computational model is integrated in a wider analysis of thermodynamic cycle units, by providing the turbine optimal design. First, the calculation routine is applied in the context of the Draugen offshore platform, where three heat recovery systems are compared. The turbine performance is investigated for three competing bottoming cycles: organic Rankine cycle (operating cyclopentane), steam Rankine cycle and air bottoming cycle. Findings indicate the air turbine as the most efficient solution (total-to-static efficiency = 0.89), while the cyclopentane turbine results as the most flexible and compact technology (2.45 ton/MW and 0.63 m3/MW). Furthermore, the study shows that, for organic and steam Rankine cycles, the optimal design configurations for the expanders do not coincide with those of the thermodynamic cycles. This suggests the possibility to obtain a more accurate analysis by including the computational model in the simulations of the thermodynamic cycles. Afterwards, the performance analysis is carried out by comparing three organic fluids: cyclopentane, MDM and R245fa. Results suggest MDM as the most effective fluid from the turbine performance viewpoint (total-to-total efficiency = 0.89). On the other hand, cyclopentane guarantees a greater net power output of the organic Rankine cycle (P = 5.35 MW), while R245fa represents the most compact solution (1.63 ton/MW and 0.20 m3/MW). Finally, the influence of the composition of an isopentane/isobutane mixture on both the thermodynamic cycle performance and the expander isentropic efficiency is investigated. Findings show how the mixture composition affects the turbine efficiency and so the cycle performance. Moreover, the analysis demonstrates that the use of binary mixtures leads to an enhancement of the thermodynamic cycle performance.