995 resultados para OLDER RELATIVES DNA
Resumo:
v.62:no.1(1972)
Resumo:
Restriction site-associated DNA sequencing (RADseq) provides researchers with the ability to record genetic polymorphism across thousands of loci for nonmodel organisms, potentially revolutionizing the field of molecular ecology. However, as with other genotyping methods, RADseq is prone to a number of sources of error that may have consequential effects for population genetic inferences, and these have received only limited attention in terms of the estimation and reporting of genotyping error rates. Here we use individual sample replicates, under the expectation of identical genotypes, to quantify genotyping error in the absence of a reference genome. We then use sample replicates to (i) optimize de novo assembly parameters within the program Stacks, by minimizing error and maximizing the retrieval of informative loci; and (ii) quantify error rates for loci, alleles and single-nucleotide polymorphisms. As an empirical example, we use a double-digest RAD data set of a nonmodel plant species, Berberis alpina, collected from high-altitude mountains in Mexico.
Resumo:
Projecte de recerca elaborat a partir d’una estada al Department for Feed and Food Hygiene del National Veterinary Institute, Noruega, entre novembre i desembre del 2006. Els grans de cereal poden estar contaminats amb diferents espècies de Fusarium capaces de produir metabolits secundaris altament tòxics com trichotecenes, fumonisines o moniliformines. La correcta identificació d’aquestes espècies és de gran importància per l’assegurament del risc en l’àmbit de la salut humana i animal. La identificació de Fusarium en base a la seva morfologia requereix coneixements taxonòmics i temps; la majoria dels mètodes moleculars permeten la identificació d’una única espècie diana. Per contra, la tecnologia de microarray ofereix l’anàlisi paral•lel d’un alt nombre de DNA dianes. En aquest treball, s’ha desenvolupat un array per a la identificació de les principals espècies de Fusarium toxigèniques del Nord i Sud d’Europa. S’ha ampliat un array ja existent, per a la detecció de les espècies de Fusarium productores de trichothecene i moniliformina (predominants al Nord d’Europa), amb l’addició de 18 sondes de DNA que permeten identificar les espècies toxigèniques més abundants al Sud d’Europa, les qual produeixen majoritàriament fumonisines. Les sondes de captura han estat dissenyades en base al factor d’elongació translació- 1 alpha (TEF-1alpha). L’anàlisi de les mostres es realitza mitjançant una única PCR que permet amplificar part del TEF-1alpha seguida de la hibridació al xip de Fusarium. Els resultats es visualitzen mitjançant un mètode de detecció colorimètric. El xip de Fusarium desenvolupat pot esdevenir una eina útil i de gran interès per a l’anàlisi de cereals presents en la cadena alimentària.
Resumo:
Human MRE11 is a key enzyme in DNA double-strand break repair and genome stability. Human MRE11 bears a glycine-arginine-rich (GAR) motif that is conserved among multicellular eukaryotic species. We investigated how this motif influences MRE11 function. Human MRE11 alone or a complex of MRE11, RAD50, and NBS1 (MRN) was methylated in insect cells, suggesting that this modification is conserved during evolution. We demonstrate that PRMT1 interacts with MRE11 but not with the MRN complex, suggesting that MRE11 arginine methylation occurs prior to the binding of NBS1 and RAD50. Moreover, the first six methylated arginines are essential for the regulation of MRE11 DNA binding and nuclease activity. The inhibition of arginine methylation leads to a reduction in MRE11 and RAD51 focus formation on a unique double-strand break in vivo. Furthermore, the MRE11-methylated GAR domain is sufficient for its targeting to DNA damage foci and colocalization with gamma-H2AX. These studies highlight an important role for the GAR domain in regulating MRE11 function at the biochemical and cellular levels during DNA double-strand break repair.
Resumo:
A collaborative exercise was carried out by the European DNA Profiling Group (EDNAP) in order to evaluate the distribution of mitochondrial DNA (mtDNA) heteroplasmy amongst the hairs of an individual who displays point heteroplasmy in blood and buccal cells. A second aim of the exercise was to study reproducibility of mtDNA sequencing of hairs between laboratories using differing chemistries, further to the first mtDNA reproducibility study carried out by the EDNAP group. Laboratories were asked to type 2 sections from each of 10 hairs, such that each hair was typed by at least two laboratories. Ten laboratories participated in the study, and a total of 55 hairs were typed. The results showed that the C/T point heteroplasmy observed in blood and buccal cells at position 16234 segregated differentially between hairs, such that some hairs showed only C, others only T and the remainder, C/T heteroplasmy at varying ratios. Additionally, differential segregation of heteroplasmic variants was confirmed in independent extracts at positions 16093 and the poly(C) tract at 302-309, whilst a complete A-G transition was confirmed at position 16129 in one hair. Heteroplasmy was observed at position 16195 on both strands of a single extract from one hair segment, but was not observed in the extracts from any other segment of the same hair. Similarly, heteroplasmy at position 16304 was observed on both strands of a single extract from one hair. Additional variants at positions 73, 249 and the HVII poly(C) region were reported by one laboratory; as these were not confirmed in independent extracts, the possibility of contamination cannot be excluded. Additionally, the electrophoresis and detection equipment used by this laboratory was different to those of the other laboratories, and the discrepancies at position 249 and the HVII poly(C) region appear to be due to reading errors that may be associated with this technology. The results, and their implications for forensic mtDNA typing, are discussed in the light of the biology of hair formation.
Resumo:
In traditional criminal investigation, uncertainties are often dealt with using a combination of common sense, practical considerations and experience, but rarely with tailored statistical models. For example, in some countries, in order to search for a given profile in the national DNA database, it must have allelic information for six or more of the ten SGM Plus loci for a simple trace. If the profile does not have this amount of information then it cannot be searched in the national DNA database (NDNAD). This requirement (of a result at six or more loci) is not based on a statistical approach, but rather on the feeling that six or more would be sufficient. A statistical approach, however, could be more rigorous and objective and would take into consideration factors such as the probability of adventitious matches relative to the actual database size and/or investigator's requirements in a sensible way. Therefore, this research was undertaken to establish scientific foundations pertaining to the use of partial SGM Plus loci profiles (or similar) for investigation.
Resumo:
During the past few decades, numerous plasmid vectors have been developed for cloning, gene expression analysis, and genetic engineering. Cloning procedures typically rely on PCR amplification, DNA fragment restriction digestion, recovery, and ligation, but increasingly, procedures are being developed to assemble large synthetic DNAs. In this study, we developed a new gene delivery system using the integrase activity of an integrative and conjugative element (ICE). The advantage of the integrase-based delivery is that it can stably introduce a large DNA fragment (at least 75 kb) into one or more specific sites (the gene for glycine-accepting tRNA) on a target chromosome. Integrase recombination activity in Escherichia coli is kept low by using a synthetic hybrid promoter, which, however, is unleashed in the final target host, forcing the integration of the construct. Upon integration, the system is again silenced. Two variants with different genetic features were produced, one in the form of a cloning vector in E. coli and the other as a mini-transposable element by which large DNA constructs assembled in E. coli can be tagged with the integrase gene. We confirmed that the system could successfully introduce cosmid and bacterial artificial chromosome (BAC) DNAs from E. coli into the chromosome of Pseudomonas putida in a site-specific manner. The integrase delivery system works in concert with existing vector systems and could thus be a powerful tool for synthetic constructions of new metabolic pathways in a variety of host bacteria.
Resumo:
Pygmy Shrews in North America have variously been considered to be one species (Sorex hoyi) or two species (S. hoyi and S. thompsoni). Currently, only S. hoyi is recognized. In this study, we examine mitochondrial DNA sequence data for the cytochrome b gene to evaluate the level of differentiation and phylogeographic relationships among eleven samples of Pygmy Shrews from across Canada. Pygmy Shrews from eastern Canada (i.e., Ontario, Quebec, New Brunswick, Nova Scotia, and Prince Edward Island) are distinct from Pygmy Shrews from western Canada (Alberta, Yukon) and Alaska. The average level of sequence divergence between these clades (3.3%) falls within the range of values for other recognized pairs of sister species of shrews. A molecular clock based on third position transversion substitutions suggests that these two lineages diverged between 0.44 and 1.67 million years ago. These molecular phylogenetic data. combined with a reinterpretation of previously published morphological data, are suggestive of separate species status for S. hoyi and S. thompsoni as has been previously argued by others. Further analysis of specimens from geographically intermediate areas (e.g., Manitoba. northern Ontario) is required to determine if there is secondary contact and/or introgression between these two putative species.
Resumo:
Using numerical simulations, we compare properties of knotted DNA molecules that are either torsionally relaxed or supercoiled. We observe that DNA supercoiling tightens knotted portions of DNA molecules and accentuates the difference in curvature between knotted and unknotted regions. The increased curvature of knotted regions is expected to make them preferential substrates of type IIA topoisomerases because various earlier experiments have concluded that type IIA DNA topoisomerases preferentially interact with highly curved DNA regions. The supercoiling-induced tightening of DNA knots observed here shows that torsional tension in DNA may serve to expose DNA knots to the unknotting action of type IIA topoisomerases, and thus explains how these topoisomerases could maintain a low knotting equilibrium in vivo, even for long DNA molecules.
Resumo:
The World Health Organization (WHO) criteria for the diagnosis of osteoporosis are mainly applicable for dual X-ray absorptiometry (DXA) measurements at the spine and hip levels. There is a growing demand for cheaper devices, free of ionizing radiation such as promising quantitative ultrasound (QUS). In common with many other countries, QUS measurements are increasingly used in Switzerland without adequate clinical guidelines. The T-score approach developed for DXA cannot be applied to QUS, although well-conducted prospective studies have shown that ultrasound could be a valuable predictor of fracture risk. As a consequence, an expert committee named the Swiss Quality Assurance Project (SQAP, for which the main mission is the establishment of quality assurance procedures for DXA and QUS in Switzerland) was mandated by the Swiss Association Against Osteoporosis (ASCO) in 2000 to propose operational clinical recommendations for the use of QUS in the management of osteoporosis for two QUS devices sold in Switzerland. Device-specific weighted "T-score" based on the risk of osteoporotic hip fractures as well as on the prediction of DXA osteoporosis at the hip, according to the WHO definition of osteoporosis, were calculated for the Achilles (Lunar, General Electric, Madison, Wis.) and Sahara (Hologic, Waltham, Mass.) ultrasound devices. Several studies (totaling a few thousand subjects) were used to calculate age-adjusted odd ratios (OR) and area under the receiver operating curve (AUC) for the prediction of osteoporotic fracture (taking into account a weighting score depending on the design of the study involved in the calculation). The ORs were 2.4 (1.9-3.2) and AUC 0.72 (0.66-0.77), respectively, for the Achilles, and 2.3 (1.7-3.1) and 0.75 (0.68-0.82), respectively, for the Sahara device. To translate risk estimates into thresholds for clinical application, 90% sensitivity was used to define low fracture and low osteoporosis risk, and a specificity of 80% was used to define subjects as being at high risk of fracture or having osteoporosis at the hip. From the combination of the fracture model with the hip DXA osteoporotic model, we found a T-score threshold of -1.2 and -2.5 for the stiffness (Achilles) determining, respectively, the low- and high-risk subjects. Similarly, we found a T-score at -1.0 and -2.2 for the QUI index (Sahara). Then a screening strategy combining QUS, DXA, and clinical factors for the identification of women needing treatment was proposed. The application of this approach will help to minimize the inappropriate use of QUS from which the whole field currently suffers.
Resumo:
The human Rad52 protein stimulates joint molecule formation by hRad51, a homologue of Escherichia coli RecA protein. Electron microscopic analysis of hRad52 shows that it self-associates to form ring structures with a diameter of approximately 10 nm. Each ring contains a hole at its centre. hRad52 binds to single and double-stranded DNA. In the ssDNA-hRad52 complexes, hRad52 was distributed along the length of the DNA, which exhibited a characteristic "beads on a string" appearance. At higher concentrations of hRad52, "super-rings" (approximately 30 nm) were observed and the ssDNA was collapsed upon itself. In contrast, in dsDNA-hRad52 complexes, some regions of the DNA remained protein-free while others, containing hRad52, interacted to form large protein-DNA networks. Saturating concentrations of hRad51 displaced hRad52 from ssDNA, whereas dsDNA-Rad52 complexes (networks) were more resistant to hRad51 invasion and nucleoprotein filament formation. When Rad52-Rad51-DNA complexes were probed with gold-conjugated hRad52 antibodies, the presence of globular hRad52 structures within the Rad51 nucleoprotein filament was observed. These data provide the first direct visualisation of protein-DNA complexes formed by the human Rad51 and Rad52 recombination/repair proteins.
PHYTOCHROME KINASE SUBSTRATE4 modulates phytochrome-mediated control of hypocotyl growth orientation
Resumo:
Gravity and light are major factors shaping plant growth. Light perceived by phytochromes leads to seedling deetiolation, which includes the deviation from vertical hypocotyl growth and promotes hypocotyl phototropism. These light responses enhance survival of young seedlings during their emergence from the soil. The PHYTOCHROME KINASE SUBSTRATE (PKS) family is composed of four members in Arabidopsis (Arabidopsis thaliana): PKS1 to PKS4. Here we show that PKS4 is a negative regulator of both phytochrome A- and B-mediated inhibition of hypocotyl growth and promotion of cotyledon unfolding. Most prominently, pks4 mutants show abnormal phytochrome-modulated hypocotyl growth orientation. In dark-grown seedlings hypocotyls change from the original orientation defined by seed position to the upright orientation defined by gravity and light reduces the magnitude of this shift. In older seedlings with the hypocotyls already oriented by gravity, light promotes the deviation from vertical orientation. Based on the characterization of pks4 mutants we propose that PKS4 inhibits changes in growth orientation under red or far-red light. Our data suggest that in these light conditions PKS4 acts as an inhibitor of asymmetric growth. This hypothesis is supported by the phenotype of PKS4 overexpressers. Together with previous findings, these results indicate that the PKS family plays important functions during light-regulated tropic growth responses