917 resultados para Numerical Algorithms and Problems


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many years have passed since Berners-Lee envi- sioned the Web as it should be (1999), but still many information professionals do not know their precise role in its development, especially con- cerning ontologies –considered one of its main elements. Why? May it still be a lack of under- standing between the different academic commu- nities involved (namely, Computer Science, Lin- guistics and Library and Information Science), as reported by Soergel (1999)? The idea behind the Semantic Web is that of several technologies working together to get optimum information re- trieval performance, which is based on proper resource description in a machine-understandable way, by means of metadata and vocabularies (Greenberg, Sutton and Campbell, 2003). This is obviously something that Library and Information Science professionals can do very well, but, are we doing enough? When computer scientists put on stage the ontology paradigm they were asking for semantically richer vocabularies that could support logical inferences in artificial intelligence as a way to improve information retrieval systems. Which direction should vocabulary development take to contribute better to that common goal? The main objective of this paper is twofold: 1) to identify main trends, issues and problems con- cerning ontology research and 2) to identify pos- sible contributions from the Library and Information Science area to the development of ontologies for the semantic web. To do so, our paper has been structured in the following manner. First, the methodology followed in the paper is reported, which is based on a thorough literature review, where main contributions are analysed. Then, the paper presents a discussion of the main trends, issues and problems concerning ontology re- search identified in the literature review. Recom- mendations of possible contributions from the Library and Information Science area to the devel- opment of ontologies for the semantic web are finally presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Linear algebra provides theory and technology that are the cornerstones of a range of cutting edge mathematical applications, from designing computer games to complex industrial problems, as well as more traditional applications in statistics and mathematical modelling. Once past introductions to matrices and vectors, the challenges of balancing theory, applications and computational work across mathematical and statistical topics and problems are considerable, particularly given the diversity of abilities and interests in typical cohorts. This paper considers two such cohorts in a second level linear algebra course in different years. The course objectives and materials were almost the same, but some changes were made in the assessment package. In addition to considering effects of these changes, the links with achievement in first year courses are analysed, together with achievement in a following computational mathematics course. Some results that may initially appear surprising provide insight into the components of student learning in linear algebra.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we propose an efficient authentication and integrity scheme to support DGPS corrections using the RTCM protocol, such that the identified vulnerabilities in DGPS are mitigated. The proposed scheme is based on the TESLA broadcast protocol with modifications that make it suitable for the bandwidth and processor constrained environment of marine DGPS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bomb attacks carried out by terrorists, targeting high occupancy buildings, have become increasingly common in recent times. Large numbers of casualties and property damage result from overpressure of the blast followed by failing of structural elements. Understanding the blast response of multi-storey buildings and evaluating their remaining life have therefore become important. Response and damage analysis of single structural components, such as columns or slabs, to explosive loads have been examined in the literature, but the studies on blast response and damage analysis of structural frames in multi-storey buildings is limited and this is necessary for assessing the vulnerability of them. This paper investigates the blast response and damage evaluation of reinforced concrete (RC) frames, designed for normal gravity loads, in order to evaluate their remaining life. Numerical modelling and analysis were carried out using the explicit finite element software, LS DYNA. The modelling and analysis takes into consideration reinforcement details together and material performance under higher strain rates. Damage indices for columns are calculated based on their residual and original capacities. Numerical results generated in the can be used to identify relationships between the blast load parameters and the column damage. Damage index curve will provide a simple means for assessing the damage to a typical multi-storey building RC frame under an external bomb circumstance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a detailed description of the influence of critical parameters that govern the vulnerability of columns under lateral impact loads. Numerical simulations are conducted by using the Finite Element program LS-DYNA, incorporating steel reinforcement, material models and strain rate effects. A simplified method based on impact pulse generated from full scale impact tests is used for impact reconstruction and effects of the various pulse loading parameters are investigated under low to medium velocity impacts. A constitutive material model which can simulate failures under tri-axial state of stresses is used for concrete. Confinement effects are also introduced to the numerical simulation and columns of Grade 30 to 50 concrete under pure axial loading are analysed in detail. This research confirmed that the vulnerability of the axially loaded columns can be mitigated by reducing the slenderness ratio and concrete grade, and by choosing the design option with a minimal amount of longitudinal steel. Additionally, it is evident that approximately a 50% increase in impact capacity can be gained for columns in medium rise buildings by enhancing the confinement effects alone. Results also indicated that the ductility as well as the mode of failure under impact can be changed with the volumetric ratio of lateral steel. Moreover, to increase the impact capacity of the vulnerable columns, a higher confining stress is required. The general provisions of current design codes do not sufficiently cover this aspect and hence this research will provide additional guidelines to overcome the inadequacies of code provisions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we provide specific examples of the educational promises and problems that arise as multiliteracies pedagogical initiatives encounter conventional institutional beliefs and practices in mainstream schooling. This paper documents and characterizes the ways in which two specific digital learning initiatives were played out in two distinctive traditional schooling contexts, as experienced by two different student groups: one comprising an elite mainstream and the other an excluded minority. By learning from the instructive complications that arose out of attempts by innovative and well-meaning educators to provide students with more relevant learning experiences than currently exist in mainstream schooling, this paper contributes fresh perspectives and more nuanced understandings of how diverse learners and their teachers negotiate the opportunities and challenges of the New London Group's vision of a multiliteracies approach to literacy and learning. We conclude by arguing that, where multiliteracies are understood as “garnish” to the “pedagogical roast” of traditional code-based and print-based academic literacies, they will continue to work on the sidelines of mainstream schooling and be seen only as either useful extensions or helpful interventions for high-performing and at-risk students respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experience plays an important role in building management. “How often will this asset need repair?” or “How much time is this repair going to take?” are types of questions that project and facility managers face daily in planning activities. Failure or success in developing good schedules, budgets and other project management tasks depend on the project manager's ability to obtain reliable information to be able to answer these types of questions. Young practitioners tend to rely on information that is based on regional averages and provided by publishing companies. This is in contrast to experienced project managers who tend to rely heavily on personal experience. Another aspect of building management is that many practitioners are seeking to improve available scheduling algorithms, estimating spreadsheets and other project management tools. Such “micro-scale” levels of research are important in providing the required tools for the project manager's tasks. However, even with such tools, low quality input information will produce inaccurate schedules and budgets as output. Thus, it is also important to have a broad approach to research at a more “macro-scale.” Recent trends show that the Architectural, Engineering, Construction (AEC) industry is experiencing explosive growth in its capabilities to generate and collect data. There is a great deal of valuable knowledge that can be obtained from the appropriate use of this data and therefore the need has arisen to analyse this increasing amount of available data. Data Mining can be applied as a powerful tool to extract relevant and useful information from this sea of data. Knowledge Discovery in Databases (KDD) and Data Mining (DM) are tools that allow identification of valid, useful, and previously unknown patterns so large amounts of project data may be analysed. These technologies combine techniques from machine learning, artificial intelligence, pattern recognition, statistics, databases, and visualization to automatically extract concepts, interrelationships, and patterns of interest from large databases. The project involves the development of a prototype tool to support facility managers, building owners and designers. This final report presents the AIMMTM prototype system and documents how and what data mining techniques can be applied, the results of their application and the benefits gained from the system. The AIMMTM system is capable of searching for useful patterns of knowledge and correlations within the existing building maintenance data to support decision making about future maintenance operations. The application of the AIMMTM prototype system on building models and their maintenance data (supplied by industry partners) utilises various data mining algorithms and the maintenance data is analysed using interactive visual tools. The application of the AIMMTM prototype system to help in improving maintenance management and building life cycle includes: (i) data preparation and cleaning, (ii) integrating meaningful domain attributes, (iii) performing extensive data mining experiments in which visual analysis (using stacked histograms), classification and clustering techniques, associative rule mining algorithm such as “Apriori” and (iv) filtering and refining data mining results, including the potential implications of these results for improving maintenance management. Maintenance data of a variety of asset types were selected for demonstration with the aim of discovering meaningful patterns to assist facility managers in strategic planning and provide a knowledge base to help shape future requirements and design briefing. Utilising the prototype system developed here, positive and interesting results regarding patterns and structures of data have been obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experience plays an important role in building management. “How often will this asset need repair?” or “How much time is this repair going to take?” are types of questions that project and facility managers face daily in planning activities. Failure or success in developing good schedules, budgets and other project management tasks depend on the project manager's ability to obtain reliable information to be able to answer these types of questions. Young practitioners tend to rely on information that is based on regional averages and provided by publishing companies. This is in contrast to experienced project managers who tend to rely heavily on personal experience. Another aspect of building management is that many practitioners are seeking to improve available scheduling algorithms, estimating spreadsheets and other project management tools. Such “micro-scale” levels of research are important in providing the required tools for the project manager's tasks. However, even with such tools, low quality input information will produce inaccurate schedules and budgets as output. Thus, it is also important to have a broad approach to research at a more “macro-scale.” Recent trends show that the Architectural, Engineering, Construction (AEC) industry is experiencing explosive growth in its capabilities to generate and collect data. There is a great deal of valuable knowledge that can be obtained from the appropriate use of this data and therefore the need has arisen to analyse this increasing amount of available data. Data Mining can be applied as a powerful tool to extract relevant and useful information from this sea of data. Knowledge Discovery in Databases (KDD) and Data Mining (DM) are tools that allow identification of valid, useful, and previously unknown patterns so large amounts of project data may be analysed. These technologies combine techniques from machine learning, artificial intelligence, pattern recognition, statistics, databases, and visualization to automatically extract concepts, interrelationships, and patterns of interest from large databases. The project involves the development of a prototype tool to support facility managers, building owners and designers. This Industry focused report presents the AIMMTM prototype system and documents how and what data mining techniques can be applied, the results of their application and the benefits gained from the system. The AIMMTM system is capable of searching for useful patterns of knowledge and correlations within the existing building maintenance data to support decision making about future maintenance operations. The application of the AIMMTM prototype system on building models and their maintenance data (supplied by industry partners) utilises various data mining algorithms and the maintenance data is analysed using interactive visual tools. The application of the AIMMTM prototype system to help in improving maintenance management and building life cycle includes: (i) data preparation and cleaning, (ii) integrating meaningful domain attributes, (iii) performing extensive data mining experiments in which visual analysis (using stacked histograms), classification and clustering techniques, associative rule mining algorithm such as “Apriori” and (iv) filtering and refining data mining results, including the potential implications of these results for improving maintenance management. Maintenance data of a variety of asset types were selected for demonstration with the aim of discovering meaningful patterns to assist facility managers in strategic planning and provide a knowledge base to help shape future requirements and design briefing. Utilising the prototype system developed here, positive and interesting results regarding patterns and structures of data have been obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports on a replication of earlier studies into a possible hierarchy of programming skills. In this study, the students from whom data was collected were at a university that had not provided data for earlier studies. Also, the students were taught the programming language Python, which had not been used in earlier studies. Thus this study serves as a test of whether the findings in the earlier studies were specific to certain institutions, student cohorts, and programming languages. Also, we used a non–parametric approach to the analysis, rather than the linear approach of earlier studies. Our results are consistent with the earlier studies. We found that students who cannot trace code usually cannot explain code, and also that students who tend to perform reasonably well at code writing tasks have also usually acquired the ability to both trace code and explain code.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We examine the use of randomness extraction and expansion in key agreement (KA) pro- tocols to generate uniformly random keys in the standard model. Although existing works provide the basic theorems necessary, they lack details or examples of appropriate cryptographic primitives and/or parameter sizes. This has lead to the large amount of min-entropy needed in the (non-uniform) shared secret being overlooked in proposals and efficiency comparisons of KA protocols. We therefore summa- rize existing work in the area and examine the security levels achieved with the use of various extractors and expanders for particular parameter sizes. The tables presented herein show that the shared secret needs a min-entropy of at least 292 bits (and even more with more realistic assumptions) to achieve an overall security level of 80 bits using the extractors and expanders we consider. The tables may be used to �nd the min-entropy required for various security levels and assumptions. We also �nd that when using the short exponent theorems of Gennaro et al., the short exponents may need to be much longer than they suggested.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the approach taken to the XML Mining track at INEX 2008 by a group at the Queensland University of Technology. We introduce the K-tree clustering algorithm in an Information Retrieval context by adapting it for document clustering. Many large scale problems exist in document clustering. K-tree scales well with large inputs due to its low complexity. It offers promising results both in terms of efficiency and quality. Document classification was completed using Support Vector Machines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For most of the work done in developing association rule mining, the primary focus has been on the efficiency of the approach and to a lesser extent the quality of the derived rules has been emphasized. Often for a dataset, a huge number of rules can be derived, but many of them can be redundant to other rules and thus are useless in practice. The extremely large number of rules makes it difficult for the end users to comprehend and therefore effectively use the discovered rules and thus significantly reduces the effectiveness of rule mining algorithms. If the extracted knowledge can’t be effectively used in solving real world problems, the effort of extracting the knowledge is worth little. This is a serious problem but not yet solved satisfactorily. In this paper, we propose a concise representation called Reliable Approximate basis for representing non-redundant approximate association rules. We prove that the redundancy elimination based on the proposed basis does not reduce the belief to the extracted rules. We also prove that all approximate association rules can be deduced from the Reliable Approximate basis. Therefore the basis is a lossless representation of approximate association rules.