962 resultados para Nonlinear programming problem
Resumo:
This paper presents a mixed-integer linear programming approach to solving the problem of optimal type, size and allocation of distributed generators (DGs) in radial distribution systems. In the proposed formulation, (a) the steady-state operation of the radial distribution system, considering different load levels, is modeled through linear expressions; (b) different types of DGs are represented by their capability curves; (c) the short-circuit current capacity of the circuits is modeled through linear expressions; and (d) different topologies of the radial distribution system are considered. The objective function minimizes the annualized investment and operation costs. The use of a mixed-integer linear formulation guarantees convergence to optimality using existing optimization software. The results of one test system are presented in order to show the accuracy as well as the efficiency of the proposed solution technique.© 2012 Elsevier B.V. All rights reserved.
Resumo:
We consider a one-dimensional cutting stock problem in which the material not used in the cutting patterns, if large enough, is kept for use in the future. Moreover, it is assumed that leftovers should not remain in stock for a long time, hence, such leftovers have priority-in-use compared to standard objects (objects bought by the industry) in stock. A heuristic procedure is proposed for this problem, and its performance is analyzed by solving randomly generated dynamic instances where successive problems are solved in a time horizon. For each period, new demands arise and a new problem is solved on the basis of the information about the stock of the previous periods (remaining standard objects in the stock) and usable leftovers generated during those previous periods. The computational experiments show that the solutions presented by the proposed heuristic are better than the solutions obtained by other heuristics from the literature. © 2012 The Authors. International Transactions in Operational Research © 2012 International Federation of Operational Research Societies.
Resumo:
The present paper proposes a new hybrid multi-population genetic algorithm (HMPGA) as an approach to solve the multi-level capacitated lot sizing problem with backlogging. This method combines a multi-population based metaheuristic using fix-and-optimize heuristic and mathematical programming techniques. A total of four test sets from the MULTILSB (Multi-Item Lot-Sizing with Backlogging) library are solved and the results are compared with those reached by two other methods recently published. The results have shown that HMPGA had a better performance for most of the test sets solved, specially when longer computing time is given. © 2012 Elsevier Ltd.
Resumo:
Goal Programming (GP) is an important analytical approach devised to solve many realworld problems. The first GP model is known as Weighted Goal Programming (WGP). However, Multi-Choice Aspirations Level (MCAL) problems cannot be solved by current GP techniques. In this paper, we propose a Multi-Choice Mixed Integer Goal Programming model (MCMI-GP) for the aggregate production planning of a Brazilian sugar and ethanol milling company. The MC-MIGP model was based on traditional selection and process methods for the design of lots, representing the production system of sugar, alcohol, molasses and derivatives. The research covers decisions on the agricultural and cutting stages, sugarcane loading and transportation by suppliers and, especially, energy cogeneration decisions; that is, the choice of production process, including storage stages and distribution. The MCMIGP allows decision-makers to set multiple aspiration levels for their problems in which the more/higher, the better and the less/lower, the better in the aspiration levels are addressed. An application of the proposed model for real problems in a Brazilian sugar and ethanol mill was conducted; producing interesting results that are herein reported and commented upon. Also, it was made a comparison between MCMI GP and WGP models using these real cases. © 2013 Elsevier Inc.
Resumo:
The Kaup-Newell (KN) hierarchy contains the derivative nonlinear Schrödinger equation (DNLSE) amongst others interesting and important nonlinear integrable equations. In this paper, a general higher grading affine algebraic construction of integrable hierarchies is proposed and the KN hierarchy is established in terms of an Ŝℓ2Kac-Moody algebra and principal gradation. In this form, our spectral problem is linear in the spectral parameter. The positive and negative flows are derived, showing that some interesting physical models arise from the same algebraic structure. For instance, the DNLSE is obtained as the second positive, while the Mikhailov model as the first negative flows. The equivalence between the latter and the massive Thirring model is also explicitly demonstrated. The algebraic dressing method is employed to construct soliton solutions in a systematic manner for all members of the hierarchy. Finally, the equivalence of the spectral problem introduced in this paper with the usual one, which is quadratic in the spectral parameter, is achieved by setting a particular automorphism of the affine algebra, which maps the homogeneous into principal gradation. © 2013 IOP Publishing Ltd.
Resumo:
This work studies the integrated lot sizing and cutting stock problem, where the goal is to capture the dependency that exists between two important decisions in the production process, in order to economize raw materials and also reduce production and inventory costs. The integrated lot sizing and cutting stock problem is studied in a small furniture factory that produces wardrobes, dressing tables and cupboards and the lot sizing and cutting stock decisions are taken by the production manager. A column-generation technique is used to solve a linear relaxation of the proposed model. The computational results, using real data from the factory, show that it is possible to reduce total inventory and raw material costs when integrated planning is used. © 2013 IFAC.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
ABSTRACT: In this work we are concerned with the existence and uniqueness of T -periodic weak solutions for an initial-boundary value problem associated with nonlinear telegraph equations typein a domain. Our arguments rely on elliptic regularization technics, tools from classical functional analysis as well as basic results from theory of monotone operators.
Resumo:
In this paper, the optimal reactive power planning problem under risk is presented. The classical mixed-integer nonlinear model for reactive power planning is expanded into two stage stochastic model considering risk. This new model considers uncertainty on the demand load. The risk is quantified by a factor introduced into the objective function and is identified as the variance of the random variables. Finally numerical results illustrate the performance of the proposed model, that is applied to IEEE 30-bus test system to determine optimal amount and location for reactive power expansion.
Resumo:
This paper proposes a Fuzzy Goal Programming model (FGP) for a real aggregate production-planning problem. To do so, an application was made in a Brazilian Sugar and Ethanol Milling Company. The FGP Model depicts the comprehensive production process of sugar, ethanol, molasses and derivatives, and considers the uncertainties involved in ethanol and sugar production. Decision-makings, related to the agricultural and logistics phases, were considered on a weekly-basis planning horizon to include the whole harvesting season and the periods between harvests. The research has provided interesting results about decisions in the agricultural stages of cutting, loading and transportation to sugarcane suppliers and, especially, in milling decisions, whose choice of production process includes storage and logistics distribution. (C)2014 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Purpose - The purpose of this paper is twofold: to analyze the computational complexity of the cogeneration design problem; to present an expert system to solve the proposed problem, comparing such an approach with the traditional searching methods available.Design/methodology/approach - The complexity of the cogeneration problem is analyzed through the transformation of the well-known knapsack problem. Both problems are formulated as decision problems and it is proven that the cogeneration problem is np-complete. Thus, several searching approaches, such as population heuristics and dynamic programming, could be used to solve the problem. Alternatively, a knowledge-based approach is proposed by presenting an expert system and its knowledge representation scheme.Findings - The expert system is executed considering two case-studies. First, a cogeneration plant should meet power, steam, chilled water and hot water demands. The expert system presented two different solutions based on high complexity thermodynamic cycles. In the second case-study the plant should meet just power and steam demands. The system presents three different solutions, and one of them was never considered before by our consultant expert.Originality/value - The expert system approach is not a "blind" method, i.e. it generates solutions based on actual engineering knowledge instead of the searching strategies from traditional methods. It means that the system is able to explain its choices, making available the design rationale for each solution. This is the main advantage of the expert system approach over the traditional search methods. On the other hand, the expert system quite likely does not provide an actual optimal solution. All it can provide is one or more acceptable solutions.
Resumo:
In this paper a mathematical model that combines lot-sizing and cutting-stock problems applied to the furniture industry is presented. The model considers the usual decisions of the lot sizing problems, as well as operational decisions related to the cutting machine programming. Two sets of a priori generated cutting patterns are used, industry cutting patterns and a class of n-group cutting patterns. A strategy to improve the utilization of the cutting machine is also tested. An optimization package was used to solve the model and the computational results, using real data from a furniture factory, show that a small subset of n-group cutting patterns provides good results and that the cutting machine utilization can be improved by the proposed strategy.