885 resultados para Nonlinear absorption
Resumo:
Two-photon absorption in methanol solutions of Rhodamine 6G is investigated by photoacoustics using the second harmonic of a pulsed Nd:YAG laser. Competition between one-photon and two-photon processes is observed, depending critically on the sample concentration and input light flux.
Resumo:
S1 to S3 excited singlet state absorption and two-photon absorption in Rhodamine 6G at the pump wavelengths of 532 and 1064 nm respectively are investigated. The advantages of employing the pulsed photoacoustic technique for conveniently observing excited singlet state absorption are discussed. It is shown that, since photoacoustics and fluorescence are complementary phenomena, analysis using both techniques will yield a better understanding of optical processes in molecules like Rhodamine 6G.
Resumo:
Organic nonlinear optical single crystals of Methyl para-Hydroxy Benzoate (MHB) have been grown using gel-solution technique. These crystals are cut along z-axis and are bombarded with Ag14+ ions of energy 100 MeV. The results show an increase in refractive index at the ion irradiated region. The dielectric constant of the irradiated crystal is increased more than 15 times compared to that of a nonirradiated crystal. The result of these changes and comparative study of second harmonic generation (SHG) efficiency before and after irradiation is discussed.
Resumo:
Absorption spectra of formaldehyde molecule in the gas phase have been recorded using photoacoustic (PA) technique with pulsed dye laser at various power levels. The spectral profiles at higher power levels are found to be different from that obtained at lower laser powers. Two photon absorption (TPA) is found to be responsible for the photoacoustic signal at higher laser power while the absorption at lower laser power level is attributed to one photon absorption (OPA) process. Probable assignments for the different transitions are given in this paper.
Resumo:
Two-photon absorption in Rhodamine 6G using the second harmonic of a pulsed Q-switched Nd:YAG laser has been studied by photoacoustic technique. It is observed that there is a competition between one-photon and two-photon absorption processes. At lower concentration the two-photon process is predominant over the one-photon process.
Resumo:
Department of Physics, Cochin University of Science & Technology
Resumo:
We consider a resistively shunted Josephson junction with a resistance that depends inversely on voltage. It is shown that such a junction in the underdamped case can give rise to extremely long-lived metastable states even in the absence of external noise. We investigate numerically this metastable state and its transition to a chaotic state. The junction voltages corresponding to these states are studied.
Resumo:
We have investigated the third-order nonlinearity in ZnO nanocolloids with particle sizes in the range 6-18 nm by the z-scan technique. The third-order optical susceptibility χ(3) increases with increasing particle size (R) within the range of our investigations. In the weak confinement regime, an R2 dependence of χ(3) is obtained for ZnO nanocolloids. The optical limiting response is also studied against particle size.
Resumo:
Optical absorption studies of phthalocyanines (Pc-s) in borate glass matrix have been reported for the first time. Measurements have been done corresponding to photon energies between 1.1 and 6.2 eV for free base, manganese, iron, nickel, molybdenum, cobalt and copper phthalocyanines. Several new discrete transitions are observed in the UV–vis region of the spectra in addition to a strong continuum component of absorption in the IR region. Values of some of the important optical constants viz. absorption coefficient (α), molar extinction coefficient (ε), absorption cross-section (σa), band width (Δλ), electric dipole strength (q2) and oscillator strength (f) for the relevant electronic transitions are also presented. All the data reported for Pc-s in the new matrix have been compared with those corresponding to solution, vapor and thin film media.
Resumo:
Pulsed photoacoustic studies in solution of C60 in toluene have been made using the 532 nm radiation from a frequency doubled Nd:YAG laser. Though C60 is found to exhibit the phenomenon of optical limiting, the results on photoacoustic measurements do not give any indication of multiphoton transitions as suggested in some of the earlier works. Results of photoacoustic measurements show that excited state absorption is the dominant process responsible for optical limiting while phenomena like nonlinear scattering may contribute to a lesser extent.
Resumo:
Measurement of thermal lensing signal as a function of laser power made in Rhodamine B solutions in methanol give clear evidence of two photon absorption process within certain concentration ranges when 488 nm Ar+ laser beam is used as the pump source. Only one photon process is found to occur when 514 nm and 476 nm beams are used as the pump.
Resumo:
We propose to show in this paper, that the time series obtained from biological systems such as human brain are invariably nonstationary because of different time scales involved in the dynamical process. This makes the invariant parameters time dependent. We made a global analysis of the EEG data obtained from the eight locations on the skull space and studied simultaneously the dynamical characteristics from various parts of the brain. We have proved that the dynamical parameters are sensitive to the time scales and hence in the study of brain one must identify all relevant time scales involved in the process to get an insight in the working of brain.
Resumo:
Medical fields requires fast, simple and noninvasive methods of diagnostic techniques. Several methods are available and possible because of the growth of technology that provides the necessary means of collecting and processing signals. The present thesis details the work done in the field of voice signals. New methods of analysis have been developed to understand the complexity of voice signals, such as nonlinear dynamics aiming at the exploration of voice signals dynamic nature. The purpose of this thesis is to characterize complexities of pathological voice from healthy signals and to differentiate stuttering signals from healthy signals. Efficiency of various acoustic as well as non linear time series methods are analysed. Three groups of samples are used, one from healthy individuals, subjects with vocal pathologies and stuttering subjects. Individual vowels/ and a continuous speech data for the utterance of the sentence "iruvarum changatimaranu" the meaning in English is "Both are good friends" from Malayalam language are recorded using a microphone . The recorded audio are converted to digital signals and are subjected to analysis.Acoustic perturbation methods like fundamental frequency (FO), jitter, shimmer, Zero Crossing Rate(ZCR) were carried out and non linear measures like maximum lyapunov exponent(Lamda max), correlation dimension (D2), Kolmogorov exponent(K2), and a new measure of entropy viz., Permutation entropy (PE) are evaluated for all three groups of the subjects. Permutation Entropy is a nonlinear complexity measure which can efficiently distinguish regular and complex nature of any signal and extract information about the change in dynamics of the process by indicating sudden change in its value. The results shows that nonlinear dynamical methods seem to be a suitable technique for voice signal analysis, due to the chaotic component of the human voice. Permutation entropy is well suited due to its sensitivity to uncertainties, since the pathologies are characterized by an increase in the signal complexity and unpredictability. Pathological groups have higher entropy values compared to the normal group. The stuttering signals have lower entropy values compared to the normal signals.PE is effective in charaterising the level of improvement after two weeks of speech therapy in the case of stuttering subjects. PE is also effective in characterizing the dynamical difference between healthy and pathological subjects. This suggests that PE can improve and complement the recent voice analysis methods available for clinicians. The work establishes the application of the simple, inexpensive and fast algorithm of PE for diagnosis in vocal disorders and stuttering subjects.
Resumo:
A mathematical analysis of an electroencephalogram of a human Brain during an epileptic seizure shows that the K2 entropy decreases as compared to a clinically normal brain while the dimension of the attractor does not show significant deviation.
Resumo:
We discuss how the presence of frustration brings about irregular behaviour in a pendulum with nonlinear dissipation. Here frustration arises owing to particular choice of the dissipation. A preliminary numerical analysis is presented which indicates the transition to chaos at low frequencies of the driving force.