969 resultados para Neuroblastoma Cell Assays
Resumo:
We recently proposed a new surgical approach to treat ventral root avulsion, resulting in motoneuron protection. The present work combined such a surgical approach with bone marrow mononuclear cells (MC) therapy. Therefore, MC were added to the site of reimplantation. Female Lewis rats (seven weeks old) were subjected to unilateral ventral root avulsion (VRA) at L4, L5 and L6 levels and divided into the following groups (n = 5 for each group): Avulsion, sealant reimplanted roots and sealant reimplanted roots plus MC. After four weeks and 12 weeks post-surgery, the lumbar intumescences were processed by transmission electron microscopy, to analyze synaptic inputs to the repaired α motoneurons. Also, the ipsi and contralateral sciatic nerves were processed for axon counting and morphometry. The ultrastructural results indicated a significant preservation of inhibitory pre-synaptic boutons in the groups repaired with sealant alone and associated with MC therapy. Moreover, the average number of axons was higher in treated groups when compared to avulsion only. Complementary to the fiber counting, the morphometric analysis of axonal diameter and g ratio demonstrated that root reimplantation improved the motor component recovery. In conclusion, the data herein demonstrate that root reimplantation at the lesion site may be considered a therapeutic approach, following proximal lesions in the interface of central nervous system (CNS) and peripheral nervous system (PNS), and that MC therapy does not further improve the regenerative recovery, up to 12 weeks post lesion.
Resumo:
Galectin-3 (gal-3) is a β-galactoside binding protein related to many tumoral aspects, e.g. angiogenesis, cell growth and motility and resistance to cell death. Evidence has shown its upregulation upon hypoxia, a common feature in solid tumors such as glioblastoma multiformes (GBM). This tumor presents a unique feature described as pseudopalisading cells, which accumulate large amounts of gal-3. Tumor cells far from hypoxic/nutrient deprived areas express little, if any gal-3. Here, we have shown that the hybrid glioma cell line, NG97ht, recapitulates GBM growth forming gal-3 positive pseudopalisades even when cells are grafted subcutaneously in nude mice. In vitro experiments were performed exposing these cells to conditions mimicking tumor areas that display oxygen and nutrient deprivation. Results indicated that gal-3 transcription under hypoxic conditions requires previous protein synthesis and is triggered in a HIF-1α and NF-κB dependent manner. In addition, a significant proportion of cells die only when exposed simultaneously to hypoxia and nutrient deprivation and demonstrate ROS induction. Inhibition of gal-3 expression using siRNA led to protein knockdown followed by a 1.7-2.2 fold increase in cell death. Similar results were also found in a human GBM cell line, T98G. In vivo, U87MG gal-3 knockdown cells inoculated subcutaneously in nude mice demonstrated decreased tumor growth and increased time for tumor engraftment. These results indicate that gal-3 protected cells from cell death under hypoxia and nutrient deprivation in vitro and that gal-3 is a key factor in tumor growth and engraftment in hypoxic and nutrient-deprived microenvironments. Overexpression of gal-3, thus, is part of an adaptive program leading to tumor cell survival under these stressing conditions.
Resumo:
In this study, we show that administration of Bothrops moojeni venom in rats induces a general disturbance in the distribution and content of the tight junctional protein ZO-1, the cell-matrix receptor beta 1 integrin, the cytoskeletal proteins, vinculin and F-actin, and of the extracellular matrix component laminin in renal corpuscles and cortical nephron tubules. These findings suggest that cell-cell and cell-matrix adhesion proteins may be molecular targets in the B. moojeni-induced kidney injury.
Resumo:
The morphological criteria for identification of intercalated duct lesions (IDLs) of salivary glands have been defined recently. It has been hypothesised that IDL could be a precursor of basal cell adenoma (BCA). BCAs show a variety of histological patterns, and the tubular variant is the one that presents the strongest resemblance with IDLs. The aim of this study was to analyse the morphological and immunohistochemical profiles of IDLs and BCAs classified into tubular and non-tubular subtypes, to determine whether or not IDL and tubular BCA represent distinct entities. Eight IDLs, nine tubular BCAs and 19 non-tubular BCAs were studied. All tubular BCAs contained IDL-like areas, which represented 20-70% of the tumour. In non-tubular BCA, IDL-like areas were occasional and small (<5%). One patient presented IDLs, tubular BCAs and IDL/tubular BCA combined lesions. Luminal ductal cells of IDLs and tubular BCAs exhibited positivity for CK7, lysozyme, S100 and DOG1. In the non-tubular BCA group, few luminal cells exhibited such an immunoprofile; they were mainly CK14-positive. Basal/myoepithelial cells of IDLs, tubular BCAs and non-tubular BCAs were positive for CK14, calponin, α-SMA and p63; they were more numerous in BCA lesions. IDL, tubular BCA and non-tubular BCA form a continuum of lesions in which IDLs are related closely to tubular BCA. In both, the immunoprofile of luminal and myoepithelial cells recapitulates the normal intercalated duct. The difference between the adenoma-like subset of IDLs and tubular BCA rests mainly on the larger numbers of myoepithelial cells in the latter. Our findings indicate that at least some BCAs can arise via IDLs.
Resumo:
99
Resumo:
To characterize the recently described SCI1 (stigma/style cell cycle inhibitor 1) gene relationship with the auxin pathway, we have taken the advantage of the Arabidopsis model system and its available tools. At first, we have analyzed the At1g79200 T-DNA insertion mutants and constructed various transgenic plants. The loss- and gain-of-function plants displayed cell number alterations in upper pistils that were controlled by the amino-terminal domain of the protein. These data also confirmed that this locus holds the functional homolog (AtSCI1) of the Nicotiana tabacum SCI1 gene. Then, we have provided some evidences the auxin synthesis/signaling pathways are required for downstream proper AtSCI1 control of cell number: (a) its expression is downregulated in yuc2yuc6 and npy1 auxin-deficient mutants, (b) triple (yuc2yuc6sci1) and double (npy1sci1) mutants mimicked the auxin-deficient phenotypes, with no synergistic interactions, and (c) the increased upper pistil phenotype in these last mutants, which is a consequence of an increased cell number, was able to be complemented by AtSCI1 overexpression. Taken together, our data strongly suggests SCI1 as a component of the auxin signaling transduction pathway to control cell proliferation/differentiation in stigma/style, representing a molecular effector of this hormone on pistil development.
Resumo:
The purpose of this study was to evaluate the effectiveness of mature red cell and reticulocyte parameters under three conditions: iron deficiency anemia, anemia of chronic disease, and anemia of chronic disease associated with absolute iron deficiency. Peripheral blood cells from 117 adult patients with anemia were classified according to iron status, and inflammatory activity, and the results of a hemoglobinopathy investigation as: iron deficiency anemia (n=42), anemia of chronic disease (n=28), anemia of chronic disease associated with iron deficiency anemia (n=22), and heterozygous β thalassemia (n=25). The percentage of microcytic red cells, hypochromic red cells, and levels of hemoglobin content in both reticulocytes and mature red cells were determined. Receiver operating characteristic analysis was used to evaluate the accuracy of the parameters in differentiating between the different types of anemia. There was no significant difference between the iron deficient group and anemia of chronic disease associated with absolute iron deficiency in respect to any parameter. The percentage of hypochromic red cells was the best parameter to discriminate anemia of chronic disease with and without absolute iron deficiency (area under curve=0.785; 95% confidence interval: 0.661-0.909, with sensitivity of 72.7%, and specificity of 70.4%; cut-off value 1.8%). The formula microcytic red cells minus hypochromic red cells was very accurate in differentiating iron deficiency anemia and heterozygous β thalassemia (area under curve=0.977; 95% confidence interval: 0.950-1.005; with sensitivity of 96.2%, and specificity of 92.7%; cut-off value 13.8). The indices related to red cells and reticulocytes have a moderate performance in identifying absolute iron deficiency in patients with anemia of chronic disease.
Resumo:
Oral squamous cell carcinoma is the most common type of cancer in the oral cavity, representing more than 90% of all oral cancers. The characterization of altered molecules in oral cancer is essential to understand molecular mechanisms underlying tumor progression as well as to contribute to cancer biomarker and therapeutic target discovery. Proteoglycans are key molecular effectors of cell surface and pericellular microenvironments, performing multiple functions in cancer. Two of the major basement membrane proteoglycans, agrin and perlecan, were investigated in this study regarding their role in oral cancer. Using real time quantitative PCR (qRT-PCR), we showed that agrin and perlecan are highly expressed in oral squamous cell carcinoma. Interestingly, cell lines originated from distinct sites showed different expression of agrin and perlecan. Enzymatically targeting chondroitin sulfate modification by chondroitinase, oral squamous carcinoma cell line had a reduced ability to adhere to extracellular matrix proteins and increased sensibility to cisplatin. Additionally, knockdown of agrin and perlecan promoted a decrease on cell migration and adhesion, and on resistance of cells to cisplatin. Our study showed, for the first time, a negative regulation on oral cancer-associated events by either targeting chondroitin sulfate content or agrin and perlecan levels.
Resumo:
Previous studies on the role of inflammation in the pathophysiology of sickle cell disease (SCD) suggested that the CCR5Δ32 allele, which is responsible for the production of truncated C-C chemokine receptor type 5 (CCR5), could confer a selective advantage on patients with SCD because it leads to a less efficient Th1 response. We determined the frequency of the CCR5Δ32 polymorphism in 795 Afro-Brazilian SCD patients followed up at the Pernambuco Hematology and Hemotherapy Center, in Northeastern Brazil, divided into a pediatric group (3 months-17 years, n = 483) and an adult group (18-70 years, n = 312). The adult patients were also compared to a healthy control group (blood donors, 18-61 years, n = 247). The CCR5/CCR5Δ32 polymorphism was determined by allele-specific PCR. No homozygous patient for the CCR5Δ32 allele was detected. The frequency of heterozygotes in the study population (patients and controls) was 5.8%, in the total SCD patients 5.1%, in the children 5.4%, in the adults with SCD 4.8%, and in the adult controls 8.1%. These differences did not reach statistical significance. Our findings failed to demonstrate an important role of the CCR5Δ32 allele in the population sample studied here.
Resumo:
The role of key cell cycle regulation genes such as, CDKN1B, CDKN2A, CDKN2B, and CDKN2C in sporadic medullary thyroid carcinoma (s-MTC) is still largely unknown. In order to evaluate the influence of inherited polymorphisms of these genes on the pathogenesis of s-MTC, we used TaqMan SNP genotyping to examine 45 s-MTC patients carefully matched with 98 controls. A multivariate logistic regression analysis demonstrated that CDKN1B and CDKN2A genes were related to s-MTC susceptibility. The rs2066827*GT+GG CDKN1B genotype was more frequent in s-MTC patients (62.22%) than in controls (40.21%), increasing the susceptibility to s-MTC (OR=2.47; 95% CI=1.048-5.833; P=0.038). By contrast, the rs11515*CG+GG of CDKN2A gene was more frequent in the controls (32.65%) than in patients (15.56%), reducing the risk for s-MTC (OR=0.174; 95% CI=0.048-0.627; P=0.0075). A stepwise regression analysis indicated that two genotypes together could explain 11% of the total s-MTC risk. In addition, a relationship was found between disease progression and the presence of alterations in the CDKN1A (rs1801270), CDKN2C (rs12885), and CDKN2B (rs1063192) genes. WT rs1801270 CDKN1A patients presented extrathyroidal tumor extension more frequently (92%) than polymorphic CDKN1A rs1801270 patients (50%; P=0.0376). Patients with the WT CDKN2C gene (rs12885) presented larger tumors (2.9±1.8 cm) than polymorphic patients (1.5±0.7 cm; P=0.0324). On the other hand, patients with the polymorphic CDKN2B gene (rs1063192) presented distant metastases (36.3%; P=0.0261). In summary, we demonstrated that CDKN1B and CDKN2A genes are associated with susceptibility, whereas the inherited genetic profile of CDKN1A, CDKN2B, and CDKN2C is associated with aggressive features of tumors. This study suggests that profiling cell cycle genes may help define the risk and characterize s-MTC aggressiveness.
Resumo:
30
Resumo:
To characterize liposomal-lidocaine formulations for topical use on oral mucosa and to compare their in vitro permeation and in vivo anesthetic efficacy with commercially available lidocaine formulations. Large unilamellar liposomes (400 nm) containing lidocaine were prepared using phosphatidylcholine, cholesterol, and α-tocoferol (4:3:0.07, w:w:w) and were characterized in terms of membrane/water partition coefficient, encapsulation efficiency, size, polydispersity, zeta potential, and in vitro release. In vitro permeation across pig palatal mucosa and in vivo topical anesthetic efficacy on the palatal mucosa in healthy volunteers (double-blinded cross-over, placebo controlled study) were performed. The following formulations were tested: liposome-encapsulated 5% lidocaine (Liposome-Lido5); liposome-encapsulated 2.5% lidocaine (Liposome-Lido2.5); 5% lidocaine ointment (Xylocaina®), and eutectic mixture of lidocaine and prilocaine 2.5% (EMLA®). The Liposome-Lido5 and EMLA showed the best in vitro permeation parameters (flux and permeability coefficient) in comparison with Xylocaina and placebo groups, as well as the best in vivo topical anesthetic efficacy. We successfully developed and characterized a liposome encapsulated 5% lidocaine gel. It could be considered an option to other topical anesthetic agents for oral mucosa.
Resumo:
Alloimmunisation is a major complication in patients with sickle cell disease (SCD) receiving red blood cell (RBC) transfusions and despite provision of Rh phenotyped RBC units, Rh antibodies still occur. These antibodies in patients positive for the corresponding Rh antigen are considered autoantibodies in many cases but variant RH alleles found in SCD patients can also contribute to Rh alloimmunisation. In this study, we characterised variant RH alleles in 31 SCD patients who made antibodies to Rh antigens despite antigen-positive status and evaluated the clinical significance of the antibodies produced. RHD and RHCE BeadChip™ from BioArray Solutions and/or amplification and sequencing of exons were used to identify the RH variants. The serological features of all Rh antibodies in antigen-positive patients were analysed and the clinical significance of the antibodies was evaluated by retrospective analysis of the haemoglobin (Hb) levels before and after transfusion; the change from baseline pre-transfusion Hb and the percentage of HbS were also determined. We identified variant RH alleles in 31/48 (65%) of SCD patients with Rh antibodies. Molecular analyses revealed the presence of partial RHD alleles and variant RHCE alleles associated with altered C and e antigens. Five patients were compound heterozygotes for RHD and RHCE variants. Retrospective analysis showed that 42% of antibodies produced by the patients with RH variants were involved in delayed haemolytic transfusion reactions or decreased survival of transfused RBC. In this study, we found that Rh antibodies in SCD patients with RH variants can be clinically significant and, therefore, matching patients based on RH variants should be considered.
Resumo:
During the last ten years, graphene oxide has been explored in many applications due to its remarkable electroconductivity, thermal properties and mobility of charge carriers, among other properties. As discussed in this review, the literature suggests that a total characterization of graphene oxide must be conducted because oxidation debris (synthesis impurities) present in the graphene oxides could act as a graphene oxide surfactant, stabilizing aqueous dispersions. It is also important to note that the structure models of graphene oxide need to be revisited because of significant implications for its chemical composition and its direct covalent functionalization. Another aspect that is discussed is the need to consider graphene oxide surface chemistry. The hemolysis assay is recommended as a reliable test for the preliminary assessment of graphene oxide toxicity, biocompatibility and cell membrane interaction. More recently, graphene oxide has been extensively explored for drug delivery applications. An important increase in research efforts in this emerging field is clearly represented by the hundreds of related publications per year, including some reviews. Many studies have been performed to explore the graphene oxide properties that enable it to deliver more than one activity simultaneously and to combine multidrug systems with photothermal therapy, indicating that graphene oxide is an attractive tool to overcome hurdles in cancer therapies. Some strategic aspects of the application of these materials in cancer treatment are also discussed. In vitro studies have indicated that graphene oxide can also promote stem cell adhesion, growth and differentiation, and this review discusses the recent and pertinent findings regarding graphene oxide as a valuable nanomaterial for stem cell research in medicine. The protein corona is a key concept in nanomedicine and nanotoxicology because it provides a biomolecular identity for nanomaterials in a biological environment. Understanding protein corona-nanomaterial interactions and their influence on cellular responses is a challenging task at the nanobiointerface. New aspects and developments in this area are discussed.
Resumo:
Human Neks are a conserved protein kinase family related to cell cycle progression and cell division and are considered potential drug targets for the treatment of cancer and other pathologies. We screened the activation loop mutant kinases hNek1 and hNek2, wild-type hNek7, and five hNek6 variants in different activation/phosphorylation statesand compared them against 85 compounds using thermal shift denaturation. We identified three compounds with significant Tm shifts: JNK Inhibitor II for hNek1(Δ262-1258)-(T162A), Isogranulatimide for hNek6(S206A), andGSK-3 Inhibitor XIII for hNek7wt. Each one of these compounds was also validated by reducing the kinases activity by at least 25%. The binding sites for these compounds were identified by in silico docking at the ATP-binding site of the respective hNeks. Potential inhibitors were first screened by thermal shift assays, had their efficiency tested by a kinase assay, and were finally analyzed by molecular docking. Our findings corroborate the idea of ATP-competitive inhibition for hNek1 and hNek6 and suggest a novel non-competitive inhibition for hNek7 in regard to GSK-3 Inhibitor XIII. Our results demonstrate that our approach is useful for finding promising general and specific hNekscandidate inhibitors, which may also function as scaffolds to design more potent and selective inhibitors.