866 resultados para Neural-Like Networks
Resumo:
Thrombotic disorders have severe consequences for the patients and for the society in general, being one of the main causes of death. These facts reveal that it is extremely important to be preventive; being aware of how probable is to have that kind of syndrome. Indeed, this work will focus on the development of a decision support system that will cater for an individual risk evaluation with respect to the surge of thrombotic complaints. The Knowledge Representation and Reasoning procedures used will be based on an extension to the Logic Programming language, allowing the handling of incomplete and/or default data. The computational framework in place will be centered on Artificial Neural Networks.
Resumo:
In this paper a comparison between using global and local optimization techniques for solving the problem of generating human-like arm and hand movements for an anthropomorphic dual arm robot is made. Although the objective function involved in each optimization problem is convex, there is no evidence that the admissible regions of these problems are convex sets. For the sequence of movements for which the numerical tests were done there were no significant differences between the optimal solutions obtained using the global and the local techniques. This suggests that the optimal solution obtained using the local solver is indeed a global solution.
Resumo:
In previous work we have presented a model capable of generating human-like movements for a dual arm-hand robot involved in human-robot cooperative tasks. However, the focus was on the generation of reach-to-grasp and reach-to-regrasp bimanual movements and no synchrony in timing was taken into account. In this paper we extend the previous model in order to accomplish bimanual manipulation tasks by synchronously moving both arms and hands of an anthropomorphic robotic system. Specifically, the new extended model has been designed for two different tasks with different degrees of difficulty. Numerical results were obtained by the implementation of the IPOPT solver embedded in our MATLAB simulator.
Resumo:
Previously we have presented a model for generating human-like arm and hand movements on an unimanual anthropomorphic robot involved in human-robot collaboration tasks. The present paper aims to extend our model in order to address the generation of human-like bimanual movement sequences which are challenged by scenarios cluttered with obstacles. Movement planning involves large scale nonlinear constrained optimization problems which are solved using the IPOPT solver. Simulation studies show that the model generates feasible and realistic hand trajectories for action sequences involving the two hands. The computational costs involved in the planning allow for real-time human robot-interaction. A qualitative analysis reveals that the movements of the robot exhibit basic characteristics of human movements.
Resumo:
Documento submetido para revisão pelos pares. A publicar em Journal of Parallel and Distributed Computing. ISSN 0743-7315
Resumo:
Dissertação de mestrado integrado em Engenharia Civil
Resumo:
Background: In pathological situations, such as acute myocardial infarction, disorders of motility of the proximal gut can trigger symptoms like nausea and vomiting. Acute myocardial infarction delays gastric emptying (GE) of liquid in rats. Objective: Investigate the involvement of the vagus nerve, α 1-adrenoceptors, central nervous system GABAB receptors and also participation of paraventricular nucleus (PVN) of the hypothalamus in GE and gastric compliance (GC) in infarcted rats. Methods: Wistar rats, N = 8-15 in each group, were divided as INF group and sham (SH) group and subdivided. The infarction was performed through ligation of the left anterior descending coronary artery. GC was estimated with pressure-volume curves. Vagotomy was performed by sectioning the dorsal and ventral branches. To verify the action of GABAB receptors, baclofen was injected via icv (intracerebroventricular). Intravenous prazosin was used to produce chemical sympathectomy. The lesion in the PVN of the hypothalamus was performed using a 1mA/10s electrical current and GE was determined by measuring the percentage of gastric retention (% GR) of a saline meal. Results: No significant differences were observed regarding GC between groups; vagotomy significantly reduced % GR in INF group; icv treatment with baclofen significantly reduced %GR. GABAB receptors were not conclusively involved in delaying GE; intravenous treatment with prazosin significantly reduced GR% in INF group. PVN lesion abolished the effect of myocardial infarction on GE. Conclusion: Gastric emptying of liquids induced through acute myocardial infarction in rats showed the involvement of the vagus nerve, alpha1- adrenergic receptors and PVN.
Resumo:
Whether the somatosensory system, like its visual and auditory counterparts, is comprised of parallel functional pathways for processing identity and spatial attributes (so-called what and where pathways, respectively) has hitherto been studied in humans using neuropsychological and hemodynamic methods. Here, electrical neuroimaging of somatosensory evoked potentials (SEPs) identified the spatio-temporal mechanisms subserving vibrotactile processing during two types of blocks of trials. What blocks varied stimuli in their frequency (22.5 Hz vs. 110 Hz) independently of their location (left vs. right hand). Where blocks varied the same stimuli in their location independently of their frequency. In this way, there was a 2x2 within-subjects factorial design, counterbalancing the hand stimulated (left/right) and trial type (what/where). Responses to physically identical somatosensory stimuli differed within 200 ms post-stimulus onset, which is within the same timeframe we previously identified for audition (De Santis, L., Clarke, S., Murray, M.M., 2007. Automatic and intrinsic auditory "what" and "where" processing in humans revealed by electrical neuroimaging. Cereb Cortex 17, 9-17.). Initially (100-147 ms), responses to each hand were stronger to the what than where condition in a statistically indistinguishable network within the hemisphere contralateral to the stimulated hand, arguing against hemispheric specialization as the principal basis for somatosensory what and where pathways. Later (149-189 ms) responses differed topographically, indicative of the engagement of distinct configurations of brain networks. A common topography described responses to the where condition irrespective of the hand stimulated. By contrast, different topographies accounted for the what condition and also as a function of the hand stimulated. Parallel, functionally specialized pathways are observed across sensory systems and may be indicative of a computationally advantageous organization for processing spatial and identity information.
Resumo:
The transition from wakefulness to sleep represents the most conspicuous change in behavior and the level of consciousness occurring in the healthy brain. It is accompanied by similarly conspicuous changes in neural dynamics, traditionally exemplified by the change from "desynchronized" electroencephalogram activity in wake to globally synchronized slow wave activity of early sleep. However, unit and local field recordings indicate that the transition is more gradual than it might appear: On one hand, local slow waves already appear during wake; on the other hand, slow sleep waves are only rarely global. Studies with functional magnetic resonance imaging also reveal changes in resting-state functional connectivity (FC) between wake and slow wave sleep. However, it remains unclear how resting-state networks may change during this transition period. Here, we employ large-scale modeling of the human cortico-cortical anatomical connectivity to evaluate changes in resting-state FC when the model "falls asleep" due to the progressive decrease in arousal-promoting neuromodulation. When cholinergic neuromodulation is parametrically decreased, local slow waves appear, while the overall organization of resting-state networks does not change. Furthermore, we show that these local slow waves are structured macroscopically in networks that resemble the resting-state networks. In contrast, when the neuromodulator decrease further to very low levels, slow waves become global and resting-state networks merge into a single undifferentiated, broadly synchronized network.
Resumo:
The Rho family GTPases Cdc42 and Rac1 are critical regulators of the actin cytoskeleton and are essential for skin and hair function. Wiskott-Aldrich syndrome family proteins act downstream of these GTPases, controlling actin assembly and cytoskeletal reorganization, but their role in epithelial cells has not been characterized in vivo. Here, we used a conditional knockout approach to assess the role of neural Wiskott-Aldrich syndrome protein (N-WASP), the ubiquitously expressed Wiskott-Aldrich syndrome-like (WASL) protein, in mouse skin. We found that N-WASP deficiency in mouse skin led to severe alopecia, epidermal hyperproliferation, and ulceration, without obvious effects on epidermal differentiation and wound healing. Further analysis revealed that the observed alopecia was likely the result of a progressive and ultimately nearly complete block in hair follicle (HF) cycling by 5 months of age. N-WASP deficiency also led to abnormal proliferation of skin progenitor cells, resulting in their depletion over time. Furthermore, N-WASP deficiency in vitro and in vivo correlated with decreased GSK-3beta phosphorylation, decreased nuclear localization of beta-catenin in follicular keratinocytes, and decreased Wnt-dependent transcription. Our results indicate a critical role for N-WASP in skin function and HF cycling and identify a link between N-WASP and Wnt signaling. We therefore propose that N-WASP acts as a positive regulator of beta-catenin-dependent transcription, modulating differentiation of HF progenitor cells.
Resumo:
Human imaging studies examining fear conditioning have mainly focused on the neural responses to conditioned cues. In contrast, the neural basis of the unconditioned response and the mechanisms by which fear modulates inter-regional functional coupling have received limited attention. We examined the neural responses to an unconditioned stimulus using a partial-reinforcement fear conditioning paradigm and functional MRI. The analysis focused on: (1) the effects of an unconditioned stimulus (an electric shock) that was either expected and actually delivered, or expected but not delivered, and (2) on how related brain activity changed across conditioning trials, and (3) how shock expectation influenced inter-regional coupling within the fear network. We found that: (1) the delivery of the shock engaged the red nucleus, amygdale, dorsal striatum, insula, somatosensory and cingulate cortices, (2) when the shock was expected but not delivered, only the red nucleus, the anterior insular and dorsal anterior cingulate cortices showed activity increases that were sustained across trials, and (3) psycho-physiological interaction analysis demonstrated that fear led to increased red nucleus coupling to insula but decreased hippocampus coupling to the red nucleus, thalamus and cerebellum. The hippocampus and the anterior insula may serve as hubs facilitating the switch between engagement of a defensive immediate fear network and a resting network.
Resumo:
The females of the two species of the Lutzomyia intermedia complex can be easily distinguished, but the males of each species are quite similar. The ratios between the extra-genital and the genital structures of L. neivai are larger than those of L. intermedia s. s., according to ANOVA. An artificial neural network was trained with a set of 300 examples, randomly taken from a sample of 358 individuals. The input vectors consisted of several ratios between some structures of each insect. The model was tested on the remaining 58 insects, 56 of which (96.6%) were correctly identified. This ratio of success can be considered remarkable if one takes into account the difficulty of attaining comparable results using traditional statistical techniques.
Resumo:
This paper presents general problems and approaches for the spatial data analysis using machine learning algorithms. Machine learning is a very powerful approach to adaptive data analysis, modelling and visualisation. The key feature of the machine learning algorithms is that they learn from empirical data and can be used in cases when the modelled environmental phenomena are hidden, nonlinear, noisy and highly variable in space and in time. Most of the machines learning algorithms are universal and adaptive modelling tools developed to solve basic problems of learning from data: classification/pattern recognition, regression/mapping and probability density modelling. In the present report some of the widely used machine learning algorithms, namely artificial neural networks (ANN) of different architectures and Support Vector Machines (SVM), are adapted to the problems of the analysis and modelling of geo-spatial data. Machine learning algorithms have an important advantage over traditional models of spatial statistics when problems are considered in a high dimensional geo-feature spaces, when the dimension of space exceeds 5. Such features are usually generated, for example, from digital elevation models, remote sensing images, etc. An important extension of models concerns considering of real space constrains like geomorphology, networks, and other natural structures. Recent developments in semi-supervised learning can improve modelling of environmental phenomena taking into account on geo-manifolds. An important part of the study deals with the analysis of relevant variables and models' inputs. This problem is approached by using different feature selection/feature extraction nonlinear tools. To demonstrate the application of machine learning algorithms several interesting case studies are considered: digital soil mapping using SVM, automatic mapping of soil and water system pollution using ANN; natural hazards risk analysis (avalanches, landslides), assessments of renewable resources (wind fields) with SVM and ANN models, etc. The dimensionality of spaces considered varies from 2 to more than 30. Figures 1, 2, 3 demonstrate some results of the studies and their outputs. Finally, the results of environmental mapping are discussed and compared with traditional models of geostatistics.
Resumo:
Genetically engineered bioreporters are an excellent complement to traditional methods of chemical analysis. The application of fluorescence flow cytometry to detection of bioreporter response enables rapid and efficient characterization of bacterial bioreporter population response on a single-cell basis. In the present study, intrapopulation response variability was used to obtain higher analytical sensitivity and precision. We have analyzed flow cytometric data for an arsenic-sensitive bacterial bioreporter using an artificial neural network-based adaptive clustering approach (a single-layer perceptron model). Results for this approach are far superior to other methods that we have applied to this fluorescent bioreporter (e.g., the arsenic detection limit is 0.01 microM, substantially lower than for other detection methods/algorithms). The approach is highly efficient computationally and can be implemented on a real-time basis, thus having potential for future development of high-throughput screening applications.
Resumo:
This paper presents a new charging scheme for cost distribution along a point-to-multipoint connection when destination nodes are responsible for the cost. The scheme focus on QoS considerations and a complete range of choices is presented. These choices go from a safe scheme for the network operator to a fair scheme to the customer. The in-between cases are also covered. Specific and general problems, like the incidence of users disconnecting dynamically is also discussed. The aim of this scheme is to encourage the users to disperse the resource demand instead of having a large number of direct connections to the source of the data, which would result in a higher than necessary bandwidth use from the source. This would benefit the overall performance of the network. The implementation of this task must balance between the necessity to offer a competitive service and the risk of not recovering such service cost for the network operator. Throughout this paper reference to multicast charging is made without making any reference to any specific category of service. The proposed scheme is also evaluated with the criteria set proposed in the European ATM charging project CANCAN