993 resultados para Natural Biological Control
Resumo:
The 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) enzyme catalyzes the major rate-limiting step of the mevalonic acid (MVA) pathway from which sterols and other isoprenoids are synthesized. In contrast with our extensive knowledge of the regulation of HMGR in yeast and animals, little is known about this process in plants. To identify regulatory components of the MVA pathway in plants, we performed a genetic screen for second-site suppressor mutations of the Arabidopsis thaliana highly drought-sensitive drought hypersensitive2 (dry2) mutant that shows decreased squalene epoxidase activity. We show that mutations in SUPPRESSOR OF DRY2 DEFECTS1 (SUD1) gene recover most developmental defects in dry2 through changes in HMGR activity. SUD1 encodes a putative E3 ubiquitin ligase that shows sequence and structural similarity to yeast Degradation of a factor (Doa10) and human TEB4, components of the endoplasmic reticulum-associated degradation C (ERAD-C) pathway. While in yeast and animals, the alternative ERAD-L/ERAD-M pathway regulates HMGR activity by controlling protein stability, SUD1 regulates HMGR activity without apparent changes in protein content. These results highlight similarities, as well as important mechanistic differences, among the components involved in HMGR regulation in plants, yeast, and animals.
Resumo:
Despite the importance of peach (Prunus persica (L.) Batsch) in Rio Grande do Sul, little is known about mites fluctuation population considered important to this crop. The objective of this study was to know the population diversity and fluctuation of mite species associated with Premier and Eldorado varieties in Roca Sales and Venâncio Aires counties, Rio Grande do Sul. The study was conducted from July 2008 to June 2009 when 15 plants were randomly chosen in each area. The plants were divided in quadrants and from each one a branch was chosen from which three leaves were removed: one collected in the apical region, another in the medium and the other in the basal region, totalizing 180 leaves/area. Five of the most abundant associated plants were collected monthly in enough amounts for the screening under the stereoscopic microscope during an hour. A total of 1,124 mites were found belonging to 14 families and 28 species. Tetranychus ludeni Zacher, 1913, Panonychus ulmi (Koch, 1836) and Mononychellus planki (McGregor, 1950) were the most abundant phytophagous mites, whereas Typhlodromalus aripo Deleon, 1967 and Phytoseiulus macropilis (Banks, 1904) the most common predatory mites. The period of one hour under stereoscopic microscope was enough to get a representative sample. In both places evaluated the ecologic indices were low, but little higherin Premier (H' 0.56; EqJ: 0.43) when compared to Eldorado (H' 0.53; EqJ 0.40). In Premier constant species were not observed and accessory only Brevipalpus phoenicis (Geijskes, 1939), T. ludeni and T. aripo. Higher abundance was observed in December and January and bigger amount in April. Already in Eldorado, T. ludeni and P. ulmi were constants. Greater abundance was observed in November and December, whereas grater richness in December and January. In both orchards were not found mites in buds. Tetranychus ludeni is the most abundant phytophagous mites with outbreak population in November, December and January and high predator diversity was observed on associated plants and on peach plants, indicating the existence of species mobility in peach orchard.
Resumo:
Studies on the potential benefits of conveying biofeedback stimulus using a musical signal have appeared in recent years with the intent of harnessing the strong effects that music listening may have on subjects. While results are encouraging, the fundamental question has yet to be addressed, of how combined music and biofeedback compares to the already established use of either of these elements separately. This experiment, involving young adults (N = 24), compared the effectiveness at modulating participants' states of physiological arousal of each of the following conditions: A) listening to pre-recorded music, B) sonification biofeedback of the heart rate, and C) an algorithmically modulated musical feedback signal conveying the subject's heart rate. Our hypothesis was that each of the conditions (A), (B) and (C) would differ from the other two in the extent to which it enables participants to increase and decrease their state of physiological arousal, with (C) being more effective than (B), and both more than (A). Several physiological measures and qualitative responses were recorded and analyzed. Results show that using musical biofeedback allowed participants to modulate their state of physiological arousal at least equally well as sonification biofeedback, and much better than just listening to music, as reflected in their heart rate measurements, controlling for respiration-rate. Our findings indicate that the known effects of music in modulating arousal can therefore be beneficially harnessed when designing a biofeedback protocol.
Resumo:
Horismenus parasitoids are an abundant and understudied group of eulophid wasps found mainly in the New World. Recent surveys based on morphological analyses in Costa Rica have quadrupled the number of named taxa, with more than 400 species described so far. This recent revision suggests that there is still a vast number of unknown species to be identified. As Horismenus wasps have been widely described as parasitoids of insect pests associated with crop plants, it is of high importance to properly establish the extant diversity of the genus, in order to provide biological control practitioners with an exhaustive catalog of putative control agents. In this study, we first collected Horismenus wasps from wild Phaseolus bean seeds in Central Mexico and Arizona to assess the genetic relatedness of three morphologically distinct species with overlapping host and geographical ranges. Sequence data from two nuclear and two mitochondrial gene regions uncovered three cryptic species within each of the three focal species (i.e., H. missouriensis, H. depressus and H. butcheri). The monophyly of each cryptic group is statistically supported (except in two of them represented by one single tip in which monophyly cannot be tested). The phylogenetic reconstruction is discussed with respect to differences between gene regions as well as likely reasons for the differences in variability between species.
Resumo:
Dreaming is a pure form of phenomenality, created by the brain untouched by external stimulation or behavioral activity, yet including a full range of phenomenal contents. Thus, it has been suggested that the dreaming brain could be used as a model system in a biological research program on consciousness (Revonsuo, 2006). In the present thesis, the philosophical view of biological realism is accepted, and thus, dreaming is considered as a natural biological phenomenon, explainable in naturalistic terms. The major theoretical contribution of the present thesis is that it explores dreaming from a multidisciplinary perspective, integrating information from various fields of science, such as dream research, consciousness research, evolutionary psychology, and cognitive neuroscience. Further, it places dreaming into a multilevel framework, and investigates the constitutive, etiological, and contextual explanations for dreaming. Currently, the only theory offering a full multilevel explanation for dreaming, that is, a theory including constitutive, etiological, and contextual level explanations, is the Threat Simulation Theory (TST) (Revonsuo, 2000a; 2000b). The empirical significance of the present thesis lies in the tests conducted to test this specific theory put forth to explain the form, content, and biological function of dreaming. The first step in the empirical testing of the TST was to define exact criteria for what is a ‘threatening event’ in dreams, and then to develop a detailed and reliable content analysis scale with which it is possible to empirically explore and quantify threatening events in dreams. The second step was to seek answers to the following questions derived from the TST: How frequent threatening events are in dreams? What kind of qualities these events have? How threatening events in dreams relate to the most recently encoded or the most salient memory traces of threatening events experienced in waking life? What are the effects of exposure to severe waking life threat on dreams? The results reveal that threatening events are relatively frequent in dreams, and that the simulated threats are realistic. The most common threats include aggression, are targeted mainly against the dream self, and include simulations of relevant and appropriate defensive actions. Further, real threat experiences activate the threat simulation system in a unique manner, and dream content is modulated by the activation of long term episodic memory traces with highest negative saliency. To sum up, most of the predictions of the TST tested in this thesis received considerable support. The TST presents a strong argument that explains the specific design of dreams as threat simulations. The TST also offers a plausible explanation for why dreaming would have been selected for: because dreaming interacted with the environment in such a way that enhanced fitness of ancestral humans. By referring to a single threat simulation mechanism it furthermore manages to explain a wide variety of dream content data that already exists in the literature, and to predict the overall statistical patterns of threat content in different samples of dreams. The TST and the empirical tests conducted to test the theory are a prime example of what a multidisciplinary approach to mental phenomena can accomplish. Thus far, dreaming seems to have always resided in the periphery of science, never regarded worth to be studied by the mainstream. Nevertheless, when brought to the spotlight, the study of dreaming can greatly benefit from ideas in diverse branches of science. Vice versa, knowledge learned from the study of dreaming can be applied in various disciplines. The main contribution of the present thesis lies in putting dreaming back where it belongs, that is, into the spotlight in the cross-road of various disciplines.
Resumo:
Humidity and ash content of powder and bran of algaroba pods are important quality parameters for biological control during storage. The studies of humidity and ash content were carried out conventional and thermogravimetric methods. Different values were obtained by the various methods. The thermogravimetric method was faster and required less sample for the humidity and ash analyses of the powder and bran of algaroba pods. The differential scanning calorimetry curves of the powder and bran of algaroba pods, dryed at 55 ºC, showed two peaks, one corresponding to the gelatinization of starch and the other to the vaporization of water. The samples dryed at 65, 75, 85, 95 and 105 ºC showed one peak, corresponding to the vaporization of water.
Resumo:
Pantoea agglomerans strains are among the most promising biocontrol agents for avariety of bacterial and fungal plant diseases, particularly fire blight of apple and pear. However, commercial registration of P. agglomerans biocontrol products is hampered because this species is currently listed as a biosafety level 2 (BL2) organism due to clinical reports as an opportunistichuman pathogen. This study compares plant-origin and clinical strains in a search for discriminating genotypic/phenotypic markers using multi-locus phylogenetic analysis and fluorescent amplified fragment length polymorphisms (fAFLP) fingerprinting.Results: Majority of the clinical isolates from culture collections were found to be improperly designated as P. agglomerans after sequence analysis. The frequent taxonomic rearrangements underwent by the Enterobacter agglomerans/Erwinia herbicola complex may be a major problem in assessing clinical associations within P. agglomerans. In the P. agglomerans sensu stricto (in the stricter sense) group, there was no discrete clustering of clinical/biocontrol strains and no marker was identified that was uniquely associated to clinical strains. A putative biocontrol-specific fAFLP marker was identified only in biocontrol strains. The partial ORF located in this band corresponded to an ABC transporter that was found in all P. agglomerans strains. Conclusion: Taxonomic mischaracterization was identified as a major problem with P.agglomerans, and current techniques removed a majority of clinical strains from this species. Although clear discrimination between P. agglomerans plant and clinical strains was not obtained with phylogenetic analysis, a single marker characteristic of biocontrol strains was identified whichmay be of use in strain biosafety determinations. In addition, the lack of Koch's postulate fulfilment, rare retention of clinical strains for subsequent confirmation, and the polymicrobial nature of P. agglomerans clinical reports should be considered in biosafety assessment of beneficial strains in this species
Resumo:
Forty-nine Brazilian Dicyma pulvinata isolates were examined by morphological traits and RFLP, RAPD and AFLP analyses. This fungus is a mycoparasite of Microcyclus ulei, the causal agent of the most devastating rubber (Hevea brasiliensis) disease, known as "South American Leaf Blight" (SALB). These isolates were compared with an Indian isolate from Cercosporidium sp., and a French isolate from Cladosporium fulvum. They were also compared with Dicyma ampullifera from Papua New Guinea. The morphological parameters analyzed confirmed the identification of the Brazilian isolates. The graphic representations of the distance matrices of each molecular marker showed similar results. Dicyma pulvinata isolates from M. ulei were closely related, whereas the reference isolates examined were dispersed. Among the D. pulvinata isolates obtained from M. ulei, a significant pairwise distance was obtained, for all the molecular markers, between the isolates from the areas favorable to the occurrence of SALB (North and Northeast of Brazil) and the region of escape for the disease (Mato Grosso State).
Resumo:
The capacity of two bacteria isolated from the tomato phylloplane to control late blight (Phytophthora infestans) was investigated in the field, and compared against the effectiveness of spraying with the fungicide chlorothalonil (1.5 g a.i. L-1) or water (control). A 55% reduction in late blight intensity was observed in the leaves of the middle of the plant and 62% in those of the upper leaves when using the antagonist UFV-STB 6 (Novosphingobium capsulatum) as compared to the control. Isolate UFV-IEA 6 (Bacillus cereus) was able to reduce disease intensity by 55%, but only in the upper leaves of the tomato plants. Treatment with isolate UFV-STB 6 also led to a significant reduction in the percentage of fruits with late blight symptoms. The results demonstrate the potential of these two bacteria in controlling this disease.
Resumo:
The effectiveness of six Trichoderma-based commercial products (TCP) in controlling Fusarium root rot (FRR) in common bean was assessed under field conditions. Three TCP, used for seed treatment or applied in the furrow, increased seedling emergence as much as the fungicide fludioxonil. FRR incidence was not affected, but all TCP and fludioxonil reduced the disease severity, compared to control. Application of Trichoderma-based products was as effective as that of fludioxonil in FRR management.
Resumo:
We studied the effectiveness of application of Trichoderma spp. in controlling white mold on common beans at the fall-winter crop in the Zona da Mata region of the State of Minas Gerais, Brazil. There was no effect of the antagonist in reducing the disease severity, which could be explained by the low temperatures and the high inoculum pressure in the field. We concluded that Trichoderma applications are not recommended for control of white mold on common beans at the fall-winter season in regions with average temperature bellow 20 °C, since this condition favor more the pathogen than the antagonist.
Resumo:
To identify formulations of biological agents that enable survival, stability and a good surface distribution of the antagonistic agent, studies that test different application vehicles are necessary. The efficiency of two killer yeasts, Wickerhamomyces anomalus (strain 422) and Meyerozyma guilliermondii (strain 443), associated with five different application vehicles, was assessed for the protection of postharvest papayas. In this study, after 90 days of incubation at 4ºC, W. anomalus (strain 422) and M. guilliermondii (strain 443) were viable with all application vehicles tested. Fruits treated with different formulations (yeasts + application vehicles) had a decreased severity of disease (by at least 30%) compared with untreated fruits. The treatment with W. anomalus (strain 422) + 2% starch lowered disease occurrence by 48.3%. The most efficient treatments using M. guilliermondii (strain 443) were those with 2% gelatin or 2% liquid carnauba wax, both of which reduced anthracnose by 50% in postharvest papayas. Electron micrographs of the surface tissues of the treated fruits showed that all application vehicles provided excellent adhesion of the yeast to the surface. Formulations based on starch (2%), gelatin (2%) and carnauba wax (2%) were the most efficient at controlling fungal diseases in postharvest papayas.
Resumo:
Microorganisms for biological control are capable of producing active compounds that inhibit the development of phytopathogens, constituting a promising tool toob tain active principles that could replace synthetic pesticides. This study evaluatedtheability of severalpotentialbiocontrol microorganismsto produce active extracellular metabolites. In vitro antagonistic capability of 50 bacterial isolates from rhizospheric soils of "criolla" potato (Solanum phureja) was tested through dual culture in this plant with different plant pathogenic fungi and bacteria. Isolates that showed significantly higher antagonistic activity were fermented in liquid media and crude extracts from the supernatants had their biological activities assessed by optical density techniques. Inhibitory effecton tested pathogens was observed for concentrations between 0.5% and 1% of crude extracts. There was a correlation between the antimicrobial activity of extracts and the use of nutrient-rich media in bacteria fermentation. Using a bioguided method, a peptidic compound, active against Fusarium oxysporum, was obtained from the 7ANT04 strain (Pyrobaculum sp.). Analysis by nuclear magnetic resonance and liquid chromatography coupled to mass detector evidenced an 11-amino acid compound. Bioinformatic software using raw mass data confirmed the presence of a cyclic peptide conformed by 11 mostly non-standard amino acids.
Resumo:
Studies addressing the biological control of Botrytis cinerea have been unsuccessful because of fails in inoculating tomato plants with the pathogen. With the aim of establishing a methodology for inoculation into stems, experiments were designed to assess: i. the aggressiveness of pathogen isolates; ii. the age at which tomato plants should be inoculated; iii. the susceptibility of tissues at different stem heights; iv. the need for a moist chamber after inoculation; and v. the effectiveness of gelatin regarding inoculum adhesion. Infection with an isolate from tomato plants that was previously inoculated into petioles and then re-isolated was successful. An isolate from strawberry plants was also aggressive, although less than that from tomato plants. Tomato plants close to flowering, at 65 days after sowing, and younger, middle and apical stem portions were more susceptible. There was positive correlation between lesion length and sporulation and between lesion length and broken stems. Lesion length and the percentage of sporulation sites were reduced by using a moist chamber and were not affected by adding gelatin to the inoculum suspension. This methodology has been adopted in studies of B. cinerea in tomato plants showing reproducible results. The obtained results may assist researchers who study the gray mold.
Resumo:
Os objetivos desse trabalho foram identificar e avaliar o potencial antagônico in vitro de bactérias endofíticas isoladas de Echinodorus scaber (chapéu de couro) sobre alguns patógenos e verificar sua capacidade de controlar o desenvolvimento de fungos em grãos de soja. Um total de 113 linhagens foi confrontado com cinco fungos patogênicos (método de cultura dupla), e quatro bactérias patogênicas (método de sobrecamada). O controle de crescimento de fungo em grãos de soja foi realizado por microbiolização e avaliado pelo método de papel de filtro. As bactérias antagonistas foram submetidas a teste de antibiose contra quatro bactérias patógenas. Duas linhagens inibiram os fungos Colletotrichum lindemunthianum, C. gloeosporioides, Corynespora cassiicula, Fusarium solani, Microsporum canis. No teste de antibiose contra as bactérias patogênicas somente (BREIII-107) apresentou atividade antagônica. As duas linhagens e foram identificadas como Bacillus sp (BREI-92) e Bacillus subitilis (BREIII-107). Quando inoculadas em grãos de soja, Bacillus sp (BREI-92) e Bacillus subitilis (BREIII-107) inibiram aproximadamente 100% do desenvolvimento de fungos sobre os grãos.