766 resultados para Nanostructured film
Resumo:
Films were grown in hexamethyldisiloxane (HMDS)-argon mixtures in a diode sputtering system with a gold cathode. Quantitative optical emission spectroscopy (OES)-actinometry revealed that the electron density or mean electron energy (or both) increased with increasing Ar concentrations in the gas feed. Increasing concentrations of Ar produced greater sputtering of the cathode and hence greater plasma A u concentrations. Fragmentation of the HMDS molecule resulted in species such as CH, Fl, and Si which were detected by OES. Film deposition rate, as determined by optical interferometry, was found to be increased by the inclusion of Ar in the gas feed. Transmission electron microscopy revealed particles, probably of Au, embedded in the polymer films. Actinometric measurements of Au in the discharge and electron probe microscopy of the deposited material showed that film Au concentrations increase with increasing concentrations of Au in the plasma. A relatively low fragmentation of HMDS molecules in the de plasma was revealed by the very small Si-HIR absorption band which is usually prominent in spectra of plasma polymerized HMDS films.
Resumo:
The influence of potential on electrochemical behavior of Ti-6Al-7Nb alloy under simulate physiological conditions was investigated by electrochemical impedance spectroscopy (EIS). The experimental results were compared with those obtained by potentiodynamic polarization curves. All measurements were carried out in Hank's aerated solution at 25degreesC, at pH 7.8 and at different potentials (corrosion potential, 0 mV(SCE), 1000 mV(SCE), and 2000 mV(SCE)). The EIS spectra exhibited a two-step or a two-time constant system, suggesting the formation of a two-layer oxide film on the metal surface. The high corrosion resistance, displayed by this alloy in electrochemical polarization tests, is due to the dense inner layer, while its osseointegration ability can be ascribed to the presence of the outer porous layer. (C) 2004 Kluwer Academic Publishers.
Resumo:
Pt-modified SnO2 electrodes were prepared onto titanium substrates in the form of thin films of similar to2 mum at different temperatures in the range from 200 to 400degreesC. Surface morphology was examined by scanning electron microscopy (SEM). It was found that Pt-SnO2 sol-gel layers are significantly rough and have a low porosity. X-ray diffraction (XRD) studies showed that the films consist of Pt nanoparticles with average size varying from about 5 to 10 nm, depending on the preparation temperature, and amorphous tin oxide. X-ray photoelectron spectroscopy (XPS) was employed to determine the superficial composition of the electrodes and demonstrated the presence of Sn4+ in all the samples. XPS spectra of the Pt 4f electrons showed the presence of Pt in the zero-valence state as well as in ionic forms. The general electrochemical behavior was characterized by cyclic voltammetry in 1 mol l(-1) HClO4 and the electrocatalytic activity towards the oxidation of formaldehyde was investigated by potential sweeps and chronoamperometry. The results obtained show that the Pt-SnO2/Ti system exhibits a significant catalytic activity for the oxidation of formaldehyde, with an onset potential below 0.1 V. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Barium titanate thin films were prepared by the polymeric precursor method and deposited onto Pt/Ti/SiO2/Si substrates. X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FT-IR) and micro-Raman spectroscopy were used to investigate the formation of the BaTiO3 perovskite phase. Afterwards, the films were submitted to post-annealing treatments in oxygen and nitrogen atmospheres at 300 degreesC for 2 h, and had their dielectric properties measured. It was observed that the electric properties of the thin films are very sensitive to the nature of the post-annealing atmosphere. This study demonstrates that post-annealing in an oxygen atmosphere increases the dielectric relaxation phenomenon and that post-annealing in a nitrogen atmosphere produces a slight dielectric relaxation. (C) 2004 Elsevier B.V All rights reserved.
Resumo:
Significant progress is being made in the photovoltaic energy conversion using organic semiconducting materials. One of the focuses of attention is the morphology of the donor-acceptor heterojunction at the nanometer scale, to ensure efficient charge generation and loss-free charge transport at the same time. Here, we present a method for the controlled, sequential design of a bilayer polymer cell architecture that consists of a large interface area with connecting paths to the respective electrodes for both materials. We used the surface-directed demixing of a donor conjugated/guest polymer blend during spin coating to produce a nanostructured interface, which was, after removal of the guest with a selective solvent, covered with an acceptor layer. With use of a donor poly(p-phenylenevinylene) derivative and the acceptor C-60 fullerene, this resulted in much-improved device performance, with external power efficiencies more than 3 times higher than those reported for that particular material combination so far.
Resumo:
Humic acids (HAs), naturally occurring biomacromolecules, were incorporated into nanostructured polymeric films using the layer-by-layer (LbL) technique, in which HA layers were alternated with layers of poly(allylamine hydrochloride) (PAH). Atomic force microscopy (AFM) revealed very smooth films, with mean roughness varying from 0.89 to 1.19 nm for films containing 5 and 15 PAH/HA bilayers, respectively. The films displayed electroactivity, with the presence of only one reduction peak at ca. 0.675 V (vs Ag/AgCl). Such a well-defined electroactivity allowed the films to be used as highly sensitive pesticide sensors, with detection of pentachlorophenol (PCP) in solutions at concentrations as low as 10(-9) mol L(-1).
Resumo:
Here we describe a new route to synthesize ultrafine rare earth doped and undoped tin oxide particles for catalytic applications. The catalytic behavior observed in SnO2 samples suggests the control of the catalytic activity and the selectivity of the products by the segregation of a layer of a rare earth compound with the increase of the heat-treatment temperature. The ultrafine particles were characterized by means of BET, XPS, TEM, XRD and Rietveld refinement. It was demonstrated that the effects of the dopant on the methanol decomposition reaction and on the H-2 selectivity were correlated with the segregation of a rare earth layer on the tin oxide samples. (C) 2002 Published by Elsevier B.V. B.V.
Resumo:
In the present work we study an anisotropic layered superconducting film of finite thickness. The film surfaces are considered parallel to the be face of the crystal. The vortex lines are oriented perpendicular to the film surfaces and parallel to the superconducting planes. We calculate the local field and the London free energy for this geometry. Our calculation is a generalization of previous works where the sample is taken as a semi-infinite superconductor. As an application of this theory we investigate the flux spreading at the super conducting surface.
Resumo:
High-quality (Pb, La)TiO3 ferroelectric thin films were successfully prepared on a Pt(111)/Ti/SiO2/Si(100) substrate for the first time by spin coating, using the polymeric precursor method. The X-ray diffraction patterns show that the films are polycrystalline in nature. This method allows for low temperature (500 degrees C) synthesis, a high quality microstructure and superior dielectric properties. The effects on the microstructure and electrical properties were studied by changing the La content. The films annealed at 500 degreesC have a single perovskite phase with only a tetragonal or pseudocubic structure. As the La content is increased, the dielectric constant of PLT thin films increases from 570 up to 1138 at room temperature. The C-V and P-E characteristics of perovskite thin films prepared at a low temperature show normal ferroelectric behavior, representing the ferroelectric switching property. The remanent polarization and coercive field of the films deposited decreased due to the transformation from the ferroelectric to the paraelectric phase with an increased La content. (C) 2001 Kluwer Academic Publishers.
Resumo:
The electrochemical behaviour of potentiodynamically formed thin anodic films of polycrystalline tin in aqueous sodium bicarbonate solutions (pH approximate to 8.3) were studied using cyclic voltammetry and electrochemical impedance spectroscopy. Different equivalent circuits corresponding to various potential regions were employed to account for the electrochemical processes taking place under each condition. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The nature of the protective film formed by benzotriazole (BTAH) on the surface of the 90/10 CuNi alloy in deaerated 0.5 mol L-1 H2SO4 solution containing Fe(III) ions as oxidant was investigated by weight-loss, calorimetric measurements, and by surface-enhanced Raman spectroscopy (SERS). The SERS measurements show that the protective film is composed by the [Cu(I)BTA](n), polymeric complex and that the BTAH molecules are also adsorbed on the electrode surface. A modification of the BET isotherm for adsorption of gases ill solids is proposed to describe the experimental results obtained from weight-loss experiments that suggest an adsorption in multilayers. Electrochemical studies of copper and nickel in 0.5 mol L-1 H2SO4 in presence and absence of BTAH have also been made as an aid to interpret the results. The calculated adsorption free energy of the cuprous benzotriazolate on the surface of the alloy is in accordance with the value for pure copper. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We report magnetic data of free standing films of poly( aniline) (PANI) protonated with a plasticizing di-ester of succinic acid. The data have been obtained using the electron spin resonance (ESR) technique at two different frequencies, X-band (9.4 GHz) and Q-band ( 34 GHz), on one hand, and by magnetization measurements in broad ranges of temperatures and magnetic fields on the other hand. All the data can be explained assuming a transition as a function of temperature from delocalized magnetic moments in the valence band to localized positive polarons in several antiferromagnetically correlated bands. By increasing the magnetic field, the magnetic properties are affected in several ways. An intra-band admixture of states occurs; it contributes to increase the spins' localization and finally promotes an antiferromagnetic-metamagnetic transition.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)